
idem Documentation

VMware, Inc.

Nov 16, 2022

CONTENTS

1 Idem 1
1.1 What does Idempotent mean? . 1
1.2 How Does This Language Work? . 1
1.3 Paradigms and Languages, This Sounds Complicated! . 2

2 Config Template 3

3 idem doc 5
3.1 doc . 5
3.2 file . 5
3.3 start_line_number . 5
3.4 end_line_number . 5
3.5 ref . 6
3.6 contracts . 6
3.7 parameters . 6

3.7.1 Examples . 6

4 Extending Idem 9
4.1 What is POP? . 9
4.2 Lets Get Down to Business . 9
4.3 Making Your First Idem State . 9

5 Adding Requisites 11

6 SLS Metadata 13
6.1 SLS Level Metadata . 13
6.2 ID Level Metadata . 13

7 SLS Structure 15
7.1 Core Components . 15

7.1.1 ID Declaration . 15
7.1.2 Path Reference . 15
7.1.3 Arguments . 16
7.1.4 Name and Names . 16
7.1.5 Order . 16

7.2 Requisites . 17
7.2.1 Requisite Ins . 17

7.3 Top Level Keys . 18
7.3.1 Include . 18
7.3.2 Extend . 19

i

8 SLS Parameters 21
8.1 Creating a parameter file . 21
8.2 Calling parameters from a state . 21
8.3 Default parameter values . 22
8.4 Missing parameter values . 22
8.5 Running an SLS state file and parameter file . 22
8.6 Running an SLS state file and multiple parameter sources . 22
8.7 Parameter precedence . 23

9 SLS Parameter Validation 25
9.1 Goal . 25
9.2 Limitation . 25
9.3 Overview of the process involved . 26

9.3.1 Step 1:- Transformation . 26
9.3.2 Step 2:- Extraction of parameters . 26
9.3.3 Step 3:- Tallying with meta section in SLS . 26
9.3.4 Step 4:- Remapping transformed strings original values . 26

9.4 Sample Output . 27
9.5 Some Additional Samples . 28

10 Argument Binding References 31
10.1 Indexes . 31
10.2 “Resource” Contract . 32
10.3 Arg_bind Requisites . 32

11 SLS Inversion 33
11.1 Motivation . 33
11.2 State Requisite Handling . 35

11.2.1 Normal Run . 35
11.2.2 Inverted Run . 36

11.3 Requirement . 37
11.4 Limitations . 38

11.4.1 Argumnet binding does not work . 38

12 JMESpath 39
12.1 Practicing with Static Data . 39
12.2 Examples . 41
12.3 Learn More . 42

13 Transparent Requisites 43
13.1 Unique Transparent Requisite . 43

14 Secure Multiple Account Management 45
14.1 Static Account Management . 45
14.2 ACCT RENDER PIPES . 46
14.3 UNENCRYPTED ACCT FILE . 46
14.4 ALLOWED_BACKEND_PROFILES . 46
14.5 ACCT SERIAL PLUGIN . 47

15 ACCT FILE 49
15.1 providers . 49
15.2 acct plugins . 50
15.3 profiles . 50
15.4 backends . 50
15.5 extras . 51

ii

16 ignore_changes Requisite 53

17 recreate_on_update Requisite 55
17.1 Greenfield Example 1 . 55
17.2 Brownfield Example 1 . 56
17.3 Brownfield Example 2 . 58
17.4 Greenfield Example 2 . 59

18 Using a delay between states to resolve Jinja template argument binding 61
18.1 Fetching argument binding reference values . 62

19 Delayed rendering 63
19.1 Closing a delayed state block . 63

20 Sensitive Requisite 65

21 SLS ACCT 67
21.1 Aggregate State . 68
21.2 Single-use Profiles . 69
21.3 Copy From Existing Profiles . 70

22 SLS Sources 71

23 The SLS Tree 73

24 Exec State 75

25 SLS Resolver Plugins - hub.source 77

26 Group plugins - hub.group 81
26.1 Finding Group Plugins . 81
26.2 Using Group Plugins . 81
26.3 Creating a Group Plugin . 82

27 Reconciliation Loop 85
27.1 Reconciler Plugin . 85
27.2 Loop Implementation . 85
27.3 Reconciliation Wait Time . 86

27.3.1 Static . 86
27.3.2 Random . 86
27.3.3 Exponential . 86

27.4 Pending plugin . 87
27.5 CLI . 87
27.6 Batch Function . 87
27.7 Notes . 88

28 Enforced State Management 89
28.1 Local cache . 89
28.2 Idem states . 90
28.3 Unlock Idem state run . 90
28.4 context . 90
28.5 Writing an ESM plugin . 91
28.6 refresh . 92
28.7 restore . 93

iii

29 Progress Bar 95
29.1 Configuration . 95
29.2 CLI . 95
29.3 Examples . 96

29.3.1 Basic progress bar . 96
29.3.2 Reconciliation . 96
29.3.3 Displaying separate progress bars . 97

29.4 Progress bars in PyCharm . 98

30 Count 99

31 Events 103
31.1 Firing Events . 103

31.1.1 from code . 103
31.1.2 from jinja/sls . 104

31.2 Event Profiles . 104
31.2.1 idem-* . 104
31.2.2 idem-status . 105
31.2.3 idem-low . 105
31.2.4 idem-high . 105
31.2.5 idem-state . 106
31.2.6 idem-chunk . 107
31.2.7 idem-run . 108
31.2.8 idem-exec . 108
31.2.9 logger . 109

32 Kubernetes CRD support 111
32.1 CRD format . 111
32.2 Execution . 112

33 Idem scripts 115

34 Idem describe 121
34.1 State file path as input . 121
34.2 Regular expression as input . 121
34.3 Filtering . 121

35 Tutorials 123
35.1 Write To File Function . 123
35.2 Template Render Function . 123
35.3 Sleep Function . 124
35.4 Trigger State in Idem . 124

35.4.1 Example . 125

36 Single Target 127

37 Tutorials 129
37.1 Example Tutorial . 129

38 Microsoft Azure Cloud Provider 131

39 Migrating Support From Salt 133
39.1 Exec Modules and State Modules . 133

39.1.1 salt/modules to exec . 133
39.1.2 salt/states to states . 133
39.1.3 salt/utils to exec . 133

iv

39.2 Namespaces . 134
39.3 Exec Function Calls . 134
39.4 States Function Calls . 134
39.5 Full Function Example . 135

39.5.1 Salt Function . 135
39.5.2 Idem State Function . 138

40 Releases 143
40.1 Idem Release 3 . 143

40.1.1 Now Pluggable! . 143
40.1.2 Runs Standalone! . 143
40.1.3 Code Sources are Pluggable . 143
40.1.4 Rendering is Separate . 144
40.1.5 Idem is a Language Runtime . 144

40.2 Idem 4 - Beyond Salt . 144
40.2.1 Late Rendering With Render Blocks . 144
40.2.2 Transparent Requisites . 144

40.3 Idem 5 - Encrypted Secrets . 144
40.4 Idem 5.1 . 145
40.5 Idem 6 . 145

40.5.1 Mod System . 145
40.5.2 Listen . 145
40.5.3 Any and All Requisites . 145

40.6 Idem 7 . 145
40.6.1 New CLI . 145
40.6.2 The Acct system . 146

40.7 Idem 7.1 . 146
40.8 Idem 7.4 . 146
40.9 Idem 12.0.0 . 146

40.9.1 Recursive Contracts for exec/state returns . 146
40.9.2 Kwarg Credentials for internal batch runs . 147
40.9.3 Get status of internal batch run . 148

40.10 Idem 12.0.2 . 149
40.11 Idem 13.0.0 . 149

40.11.1 Describe Subcommand . 149
40.11.2 Implementing describe functionality . 152

40.12 Idem 14.0.0 . 153
40.12.1 Auto State . 153
40.12.2 Soft Fail . 154
40.12.3 Returns . 155
40.12.4 Resource . 156

40.13 Idem 15.0.0 . 157
40.13.1 Reconciler Plugin . 157
40.13.2 CLI . 157
40.13.3 LOOP . 157

40.14 Idem 15.0.1 . 158
40.15 Idem 16.0.0 . 158

40.15.1 Writing an ingress plugin . 158
40.15.2 Setting up credentials . 158
40.15.3 from code . 158
40.15.4 from jinja/sls . 159

40.16 Idem 17.0.0 . 160
40.17 Argument Binding References . 160

40.17.1 Indexes . 161

v

40.17.2 “Resource” Contract . 161
40.17.3 Arg_bind Requisites . 162

41 Contributing Guide 163
41.1 TL;DR Quickstart . 163
41.2 Ways to contribute . 164
41.3 Overview of how to contribute to this repository . 164
41.4 Prerequisites . 164

41.4.1 Windows 10 users . 164
41.5 Fork, clone, and branch the repo . 165
41.6 Set up your local preview environment . 165

41.6.1 pre-commit and nox Setup . 166
41.6.2 What is pre-commit? . 166

41.7 Sync local master branch with upstream master . 166
41.8 Preview HTML changes locally . 167
41.9 Testing a pop project . 167
41.10 Contribution Guidelines . 168

41.10.1 Tests . 168
41.10.2 Documentation . 168
41.10.3 Code Style . 168
41.10.4 Issues . 168
41.10.5 Pull Requests . 169
41.10.6 Versioning . 169

42 License 171

43 Indices and tables 177

vi

CHAPTER

ONE

IDEM

Idem is an idempotent dataflow programming language. It exposes stateful programming constructs that makes things
like enforcing the state of an application, configuration, SaaS system, or others very simple.

Since Idem is a programming language, it can also be used for data processing and pipelining. Idem can be used not
only to manage the configuration of interfaces, but also for complex rule engines and processing files or workflows.

Idem is a language to glue together management of all sorts of interfaces. You can think of it like having idempotent
scripts. Automation that can be run over and over again that enforces a specific state or process.

Idem is unique in that it is built purely as a language. It can be added to any type of management system out there and
can be applied in a cross platform way easily.

Idem’s functionality can also be expanded easily. Instead of storing all of the language components in a single place, the
libraries used by Idem can be written independently and seamlessly merged into Idem, just like a normal programming
language!

1.1 What does Idempotent mean?

The concept of Idempotent is simple! It just means that every time something is run, it always has the same end result
regardless of the state of a system when the run starts!

At first glance this might seem useless, but think more deeply. Have you ever needed to make sure that something was
set up in a consistent way? It can be very nice to be able to enforce that setup without worrying about breaking it. Or
think about data pipelines, have you ever had input data that needed to be processed? Idempotent systems allow for
data to be easily processed in a consistent way, over and over again!

1.2 How Does This Language Work?

Idem is built using two critical technologies, Python and POP. Since Idem is built on Python it should be easy to extend
for most software developers. Extending Idem can be very easy because simple Python modules are all you need to
add capabilities!

The other technology, POP, may be new to you. This is the truly secret sauce behind Idem as well as a number of
emerging exciting technologies. POP stands for Plugin Oriented Programming. It is the brainchild of the creator of
Salt and a new way to write software. The POP system makes the creation of higher level paradigms like Idem possible,
but also provides the needed components to make Idem extensible and flexible. If POP is a new concept to you, check
it out!

Idem works by taking language files called sls files and compiling them down to data instructions. These data instruc-
tions are then run through the Idem runtime. These instructions inform Idem what routines to call to enforce state or
process data. It allows you to take a high level dataset as your input, making the use of the system very easy.

1

https://github.com/thatch45
https://github.com/thatch45
https://pop.readthedocs.io
https://pop.readthedocs.io

idem Documentation

1.3 Paradigms and Languages, This Sounds Complicated!

Under the hood, it is complicated! The guts of a programming language are complicated, but it is all there to make
your life easier! You don’t need to understand complex computer science theory to benefit from Idem. You just need
to learn a few simple things and you can start making your life easier today!

2 Chapter 1. Idem

CHAPTER

TWO

CONFIG TEMPLATE

To save all of your CLI flags in a single config file, run the full idem CLI command that you want, with
--config-template as an additional flag. The generated config file will also include options for plugins in adja-
cent projects that are not necessarily exposed in the idem CLI command.

At the time of this writing, a config template will include the settings shown in the following example. Note that some
settings are empty because the example command only included --config-template and no other flags.

$ idem --config-template

Resulting config file:

acct:
acct_file:
acct_key:
crypto_plugin: fernet
extras:
output_file: null
serial_plugin: msgpack
allowed_backend_profiles:
render_pipe: jinja|yaml

evbus:
serial_plugin: json

idem:
acct_profile: default
cache_dir: ~/.idem/var/cache/idem
esm_keep_cache: false
esm_plugin: local
esm_profile: default
esm_serial_plugin: msgpack
exec: ''
exec_args: []
log_datefmt: '%H:%M:%S'
log_file: idem.log
log_fmt_console: '[%(levelname)-8s] %(message)s'
log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'
log_handler_options:
log_level: warning
log_plugin: basic
param_sources: []
params: ''
pending: default

(continues on next page)

3

idem Documentation

(continued from previous page)

reconciler: none
render: jinja|yaml|replacements
root_dir: ~/.idem
run_name: cli
runtime: parallel
sls: []
sls_sources: []
test: false
tree: ''

pop_config:
log_datefmt: '%H:%M:%S'
log_file: idem.log
log_fmt_console: '[%(levelname)-8s] %(message)s'
log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'
log_handler_options: *id001
log_level: warning
log_plugin: basic

rend:
file: null
output: null
pipe: yaml

To run an idem command that uses the settings from a config file, add the --config option. The following idem
state example has my_config.cfg as the saved config file.

$ idem state --config=my_config.cfg

4 Chapter 2. Config Template

CHAPTER

THREE

IDEM DOC

The idem doc subcommand has prints function documentation for references in the code. It will return all metadata
about a function reference on the hub. It uses the pop-tree project under the hood to parse references on the hub.

Running the idem doc subcommand will return all references that match the given reference.

idem doc <function reference on the hub>

Each returned reference will contain the following values.

3.1 doc

The function docstring.

3.2 file

The file that owns this particular reference on the hub.

3.3 start_line_number

The line number in the file where the function begins, useful for pyls-pop.

3.4 end_line_number

The line number in the file where the function ends, useful for pyls-pop.

5

https://gitlab.com/vmware/pop/pop-tree
https://gitlab.com/vmware/pop/pyls-pop
https://gitlab.com/vmware/pop/pyls-pop

idem Documentation

3.5 ref

The reference to this function on the hub

3.6 contracts

There are three kinds of contracts, each function lists the references to all contracts that it implements.

• pre: A list of the function’s pre contracts

• post: A list of the function’s post contracts

• call: A list containing a function’s call contract

3.7 parameters

Each parameter in the function header is listed. There are two possible values for a parameter:

• default: If this key is present for a parameter, it contains it’s default value

• annotation: The typehint for a parameter if one exists

3.7.1 Examples

Get the documentation from a specific exec module function.

idem doc exec.test.ping

output:

exec.test.ping:

doc:

Immediately return success
file:

~/PycharmProjects/idem/idem/exec/test.py
start_line_number:

13
end_line_number:

15
ref:

exec.test.ping
contracts:

pre:
call:

- exec.recursive_contracts.soft_fail.call
post:

- exec.recursive_contracts.init.post
parameters:

(continues on next page)

6 Chapter 3. idem doc

idem Documentation

(continued from previous page)

hub:

Get the documentation for a specific state module function.

idem doc states.test.present

output:

states.test.present:

doc:

Return the previous old_state and the given new_state.
Raise an error on fail

file:
~/PycharmProjects/idem/idem/states/test.py

start_line_number:
279

end_line_number:
295

ref:
states.test.present

contracts:

pre:

- states.recursive_contracts.init.pre
call:
post:

- states.recursive_contracts.resource.post_present
- states.recursive_contracts.init.post

parameters:

hub:

ctx:

name:

annotation:

<class 'str'>
new_state:

default:

None
result:

default:

True
force_save:

default:

None

3.7. parameters 7

idem Documentation

Return all functions in a single module:

idem doc states.aws.ec2.vpc

Return all functions in a sub:

idem doc states.aws

Return absolutely every reference on the hub:

idem doc

8 Chapter 3. idem doc

CHAPTER

FOUR

EXTENDING IDEM

Extending Idem is simple, but it does require a few steps. To extend Idem you need to create a new Idem plugin project
using POP. Now don’t run away, this has been designed to be easy!

4.1 What is POP?

You don’t need to understand the inner workings of Plugin Oriented Programming or pop to extend Idem, just think
about it as a system for writing and managing plugins. Idem is all about plugins!

If you want to learn more about the details of POP, take a look at the docs. It is powerful stuff and might change how
you program forever: https://pop.readthedocs.io

4.2 Lets Get Down to Business

Start by installing idem:

pip install idem

This will download and install both idem and pop. Now you can start your project by calling pop-create to make the
structure you need:

pop-create idem_tester -t v -d exec states

By passing -t v to pop-create we are telling pop-create that this is a Vertical App Merge project. By passing -d exec
states we are asking pop-create to add the 2 dynamic names exec and states to the project.

This will create a new project called idem_tester with everything you need to get the ball rolling.

4.3 Making Your First Idem State

In your new project there will be a directory called idem_tester/states, in this directory add a file called trial.py:

async def run(hub, ctx, name):
"""
Do a simple trial run
"""
return {

"name": name,
(continues on next page)

9

https://pop.readthedocs.io

idem Documentation

(continued from previous page)

"result": True,
"changes": {},
"comment": "It Ran!",

}

For idem to run, states functions need to return a python dict that has 4 fields, name, result, changes, and comment.
These fields are used by Idem to not only expose data to the user, but also to track the internal execution of the system.

Next install your new project. For idem to be able to use it your project, it needs to be in the python path. There are a
lot of convenient ways to manage the installation and deployment of POP projects, but for now we can just use good
old pip:

pip install -e /path/to/your/project/root

Now you can execute a state with idem. As you will see, pop and idem are all about hierarchical code. Idem runs code
out of a directory, you need to point idem to a directory that contains sls files. Go ahead and cd to another directory
and make a new sls directory.

mkdir try
cd try

Now open a file called try.sls:

try something:
trial.run

Now from that directory run idem:

idem --sls try

And you will see the results from running your trial.run state!

10 Chapter 4. Extending Idem

CHAPTER

FIVE

ADDING REQUISITES

Requisites are a basic language feature of idem, they allow for a definition of how to perform a dependency check.
The simplest requisite is require. The require requisite simply mandates that the required ref has been processed and
returned a result of True.

There are 2 plugin subsystems that are used in the resolution of requisites. The idem.req sub and the idem.rules sub.
These are simple subs that allow the definition of the requisite as well as the rules that create the requisite check.

An idem.req plugin has a function called define which is used to define what rules are run by the requisite and how
those rules are checked. This allows the rules to be re-usable for multiple requsite definitions. The simple example of
the require requisite is this:

def define(hub):
"""
Return the definition used by the runtime to insert the conditions of the
given requisite
"""
return {

"result": [True, None],
}

This return states that only one rule needs to be checked, the result rule. The value, in this case, that is passed to the
result rule is the list [True, None]. This value is loaded into the result rule as the condition argument.

The rules are a little more complicated. They need to do the work to verify that for all of the required ID refs that the
rule is followed. Here is the result rule:

def check(hub, condition, reqret, chunk):
"""
Check to see if the result is True
"""
if isinstance(condition, list):

if reqret["ret"]["result"] in condition:
return {}

if reqret["ret"]["result"] is condition:
return {}

else:
return {

"errors": [
f'Result of require {reqret["r_tag"]} is "{reqret["ret"]["result"]}",␣

→˓not "{condition}"'
]

}

11

idem Documentation

A rule plugin needs a function called check that is used to check the rule. It takes 3 arguments. These arguments are
condition, reqret, and chunk. These are objects that are internal to idem. The condition is the data passed in by the
define function in the idem.req plugin. The reqret is the return information for a single required ID that has already
been executed. The chunk is the ID declaration with the assigned requisite. The return from this function defines

12 Chapter 5. Adding Requisites

CHAPTER

SIX

SLS METADATA

Sometimes it may be desirable for metadata to be stored inside of an SLS file. This can be useful for defining any
additional data that an external system may want to use that is not included inside of the Idem runtime.

6.1 SLS Level Metadata

Add metadata to an SLS file is very simple, just make a top level key in the SLS file called “META”:

META:
foo: bar
baz:
- 1
- True
- "a string"

The “META” key is transferred into the idem run’s running dict under the name “meta” and can be retrieved by anyone
who has access to the run on the hub.

Found in hub.idem.RUNS[<run name>][“meta”][“SLS”]

The metadata is stored relative to the SLS reference where the original metadata was found.

6.2 ID Level Metadata

Metadata can also be stored inside the ID Declarations, this allows for metadata to be associated with an ID instead of
just with the SLS file. Simply create a “META” key inside the ID Declaration:

private_network:
META:
foo: bar

cloud.vpc:
- cidir: 10.0.0.0/16

13

idem Documentation

14 Chapter 6. SLS Metadata

CHAPTER

SEVEN

SLS STRUCTURE

Idem utilize a system called SLS - Structured Layered States. The SLS system allows for a specific data structure that
represents the desired state of a system. That target data structure can be obtained through a layered rendering process.
Hence the name - Structured Layered State.

This allows for data to be represented in any way imaginable - JSON, YAML, XML, or even programming languages.
This major benefit makes it easy to write Idem code in whatever way works best for you!

7.1 Core Components

This document is all about defining the core components of the SLS file, that way you can identify what the underlying
data structure looks like and how to best get there. By default SLS files are represented as YAML, unlike other YAML
systems you may be familiar with, the SLS format has a finite dept, making it very easy to learn, read, and write.

The first components we will discuss are the ID Declaration, Path Reference, and Arguments. The core use of all SLS
files can be encapsulated inside these three simple components:

Some_Desired_State: # ID Declaration
cloud.instance.present: # Path Reference
- option: value # Argument

7.1.1 ID Declaration

The ID Declaration defines the top level identifier user for all reverences under it. The ID Declaration is also passed to
the state function as the name, unless an argument is passed as name under the Path Reference.

7.1.2 Path Reference

The Path Reference specifies what underlying function is being called to enforce the idempotent state for the target
cloud/API/system. The dot delimited Path Reference links directly to how plugins are loaded into Idem using POP. The
Path Reference is a literal reference to a location on the hub inside of Idem. The hub contains all of the code that Idem
runs, therefore the Path Reference is a literal path to the code location translated as hub.idem.states.<Path Reference>.

The main benefit here is that the Path Reference gives you a direct insight into where the code that is being called
resides. This makes development and debugging very simple. If a code issue exists with a state in Idem then you will
know just where to find it!

15

idem Documentation

Path Components

The path is broken up into two components, the state ref, and the function ref. The periods delineate the two references.
Everything after the last period is the function ref and everything before the last period is the state ref.

For instance, if the Path Ref is cloud.network.present, then the state ref is cloud.network and the function ref is present.

7.1.3 Arguments

Since the Path Reference is a path to a function, the arguments are - for the most part - arguments to that function! This
technically makes Idem self documenting. But some arguments are global to all state definitions, such as the name,
requisites, and order options.

7.1.4 Name and Names

Every state can take on a name argument, the name argument is always the primary identifier for a state. If the name
argument is not provided, Idem will use the ID Declaration as the name.

The names argument allows for state replication to easily take place for multiple components. Using names can make
it easy to define multiple identical resources in a clean way. Just as the names option and pass a list of desired names.
Then Idem will compile the names down to multiple identical enforcements.

Some_machines:
cloud.instance.present:
- names:
- web1
- web2
- web3
- web4
- web5
- web6
- web7
- web8
- web9

This state will create 9 identical cloud instances named web1 through web9

7.1.5 Order

The order keyword can change the evaluation order of Idem. When Idem runs, it evaluates the statements it is given in
the order they are defined in SLS files. This means that, outside of requisites, Idem will run in the order it is defined.

The order of execution can be effectively nullified when using the parallel runtime. Idem can execute using either
a serial, or a parallel runtime. The parallel runtime will evaluate all requisites and then run everything that is not
encumbered by a requisite at the same time. This means that if you are using the parallel runtime, the order keyword
will have no effect.

If you are using the serial runtime, then each state is executed one after another. This means that the order keyword can
be used to change the order in which things are executed. Use the order keyword and pass in a number. The default
ordering defined by Idem will add numbers based on the highest order value passed in. This means that if you pass
order: 1 then that state will be evaluated first. Similarly, you can pass order: -1 and start with negative numbers to
ensure that states are executed LAST.

16 Chapter 7. SLS Structure

idem Documentation

State_A:
cloud.instance.present:
- order: -1 # Make it last

State_B:
cloud.instance.present:
- order: 1 # Make it first

Again, remember, that if you are using the parallel runtime, then both of these instances would be created at the same
time.

7.2 Requisites

The requisite system inside of Idem is very powerful at determining the relationships that states have with each other.
Being able to define requisites can make your enforcement significantly faster, more reliable, and can be used to create
tasks.

These relationships are evaluated at runtime and can handle dynamic situations within your state definitions. A requisite
is passed to a state as an argument:

State_A:
cloud.instance.present:
- require:
- cloud.instance: State_B

State_B:
cloud.network.present:

Is this case, State_A will only run once State_B has completed successfully. The referencing works by taking the state
ref component of the path ref followed by the name or ID of the desired state to create a relationship with.

7.2.1 Requisite Ins

The requisites come in two flavors - requisites, and requisite ins. Every requisite that exists can be appended with an
_in to specify that the direction changes.

A standard requisite states “I require you”. For instance, this state is a standard requisite:

State_A:
cloud.instance.present:
- require:
- cloud.network: State_B

State_B:
cloud.network.present:

State_A is saying “I require State_B”

A requisite in simply says “They require me”. This means that we can get the same effect as the requisite code above
with this requisite in:

State_A:
cloud.instance.present

(continues on next page)

7.2. Requisites 17

idem Documentation

(continued from previous page)

State_B:
cloud.network.present:
- require_in:
- cloud.instance: State_A

So in this case, we are saying “I am State_B, State_A needs to require me”.

7.3 Top Level Keys

Idem has a number of top level keys that can be used to include additional SLS files or to exclude specific IDs. You
can also modify ID declarations from another file with the extend keyword.

7.3.1 Include

Include simply allow you to include information from another sls file in your run. Using include is simple, at the top
of your SLS file just add include followed by a list of SLS references you wish to include in your run:

include:
- foo.bar
- azure.networks

The include statement evaluates SLS paths. You can easily execute Idem against a single SLS file, but Idem supports
having a file tree. References to locations on the file tree are dot delimited and reference directories.

For instance, the SLS file you execute is assumed to be at the root of the tree. So if you execute an SLS file called
start.sls, and it has the include statement:

include:
- aws.instances
- azure.networks

Then Idem will look for these files in a few locations. Idem will check the aws directory for a file called instances.sls,
and if it does not find that file, it will check for a directory called aws/instances/init.sls.

Note that an SLS file can have include block along with states. Here is a possible aws/instances.sls:

include:
- .ec2.vpcs

aws.resource-1:
aws.resource-1.present:

....

An SLS file aws/ec2/vpcs.sls or aws/ec2/vpcs/init.sls is expected.

18 Chapter 7. SLS Structure

idem Documentation

7.3.2 Extend

The extend keyword allows for diving into the state compiler and modifying a state from another included SLS file.
This allows you to modify an external state. This can be useful if you are using your Idem code to manage multiple
clouds that are NEARLY identical. So you can include the SLS files that define some external ID Declarations, then
overwrite the options passed to them:

include:
- gcp.networks

extend:
Network_1:
gcp.network.present:
- ip_range: 10.10.57

In this case, the Network_1 ID from the gcp.networks SLS file will be overwritten with a new option.

RULES TO EXTEND BY

There are a few rules to remember when extending states:

1. Always include the SLS being extended with an include declaration

2. Requisites (watch and require) are appended to, everything else is overwritten

3. extend is a top level declaration, like an ID declaration, cannot be declared twice in a single SLS

4. Many IDs can be extended under the extend declaration

7.3. Top Level Keys 19

idem Documentation

20 Chapter 7. SLS Structure

CHAPTER

EIGHT

SLS PARAMETERS

Writing and applying infrastructure as data relies on SLS files, where declarative data may be reapplied again and again
to produce and maintain a desired result. In SLS files, parameters are how you describe and customize for the result
that you want.

8.1 Creating a parameter file

A parameter file is a special SLS file that only contains key-value pairs as shown in the following example. A parameter
file doesn’t include any state declarations.

location: eastus
subscription_id: xxx-xxxxxxxxxxxx
locations:

- eastus
- westus

Parameter files can call other parameter files by using an include statement as shown in the following example.

subscription_id: xxx-xxxxxxxxxxxx
include:

- params_extra

In the example, params_extra.sls then contains the following content.

locations:
- eastus
- westus

8.2 Calling parameters from a state

In SLS files with state declarations, parameters are available as a Python dictionary object called params.

Because params is a dictionary object, you can use dictionary functions such as get, items, and so on.

For example, you retrieve values with params.get('parameter') where parameter is the parameter name. Param-
eter values from the earlier example would be retrieved as shown here.

{{ params.get['location'] }}
{{ params['subscription_id'] }}
{{ params.get['locations'][1] }}

21

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/stdtypes.html#dict.items

idem Documentation

8.3 Default parameter values

To enforce a default value for the parameter, use params.get('param', 'default_value') where
default_value is the value you want.

8.4 Missing parameter values

If a called parameter is missing from the parameters file or has no value params.get('parameter') returns None
as the result.

To verify that a parameter is defined in the parameters file, use params['missing_parameter'] where
missing_parameter is the one you’re looking for. If the parameter isn’t defined, an exception similar to the fol-
lowing occurs.

Jinja variable: 'idem.idem.idem.idem.state. object' has no attribute 'missing_parameter'

8.5 Running an SLS state file and parameter file

In addition to defining parameters and referencing them within state files, commands need to specify the parameters to
use.

To run a state file along with an associated parameter file, add the --params command line option.

idem state my_state.sls --params path/to/parameter_file.sls

8.6 Running an SLS state file and multiple parameter sources

Multiple parameter sources are supported. Locations specified in --params reference locations in --param-sources
where each source is searched in the order given.

idem state my_state.sls --params "file.sls" "vault/location/specific" --param-sources
→˓"file://local/file.sls" "vault://vault/location"

In the preceding command, file.sls is successfully found in the first parameter source file://local/file.sls.

Next, Idem checks for vault/location/specific in the first parameter source file://local/file.sls.

It isn’t there, so Idem then checks for vault/location/specific in the second parameter source vault://vault/
location.

All found sources are read and compiled into a single parameter tree.

22 Chapter 8. SLS Parameters

idem Documentation

8.7 Parameter precedence

Parameters can be overridden according to the following rules.

• A parameter value directly in a parameter file overrides a value coming from an included parameter file.

• In a parameter file with multiple included files, a value from a later included file overrides a value from an earlier
one.

• In a command line that calls multiple parameter files, a parameter file from later in the command line overrides
one given earlier.

See the following example, where param.sls is the parameter file called by the command line.

In this hierarchy of included parameters, a will be set to 4 and b will be set to 4:

==> param.sls <==
include:
- param2

==> param2.sls <==
include:
- param3
- param4

==> param3.sls <==
a: 3
b: 3

==> param4.sls <==
a: 4
b: 4

If you change the example so that param2.sls reverses the include order, parameter a will be 3 and parameter b will
be 3.

==> param2.sls <==
include:
- param4
- param3

If you change the example so that param2.sls has its own assignment of 2 for parameter a, a will be 2 and b will be
3.

==> param2.sls <==
include:
- param4
- param3
a: 2

8.7. Parameter precedence 23

idem Documentation

24 Chapter 8. SLS Parameters

CHAPTER

NINE

SLS PARAMETER VALIDATION

Parameter validation is feature essentially enables documentation and validation of params used in an SLS file. It is not
at all related to params processing, as params processing only occurs during state sub-command execution - where
actual param values are available. During validate phase we have no idea what params the given SLS uses. In fact, to
extract those out of SLS is our goal.

9.1 Goal

The goal of SLS parameter validation is to extract/document parameters being used in an SLS file (including any files
referred using include statement) for each state defined in the SLS file. Further, an additional goal is to do this
transparently without exposing the end-user to any of the idem internals.

9.2 Limitation

When jinja processes any document it does not have any context as to what is the state that is being currently processed,
since jinja is indifferent to sls syntax and only focuses on the piece of code it needs to handle. Not only that, the params
may be getting used outside of any state, for initializing a jinja variables, like so:

{% set value = params.get('value') %}

state A:
state.a.present:

group: {{ value }}

state B:
state.b.present:

group: {{ value }}

The above limitations are the overbearing force behind this implementation.

25

idem Documentation

9.3 Overview of the process involved

9.3.1 Step 1:- Transformation

We let jinja process the document, but instead of sending a traditional dict object as params object, we send an ob-
ject of type Parameters class as defined in idem/tool/parameter.py. This class transforms orginal string (e.g.
{{ params.get('rg_name').get('your_rg', 'default') }}) into another string which preserves the context
(e.g. ?? params.get('rg_name').get('your_rg', 'default') ?? ^^rg_name^^.~~your_rg ??). Here
first portion of ?? string has the original expression and second portion helps us identify the state inside which the
param is referred.

The above example transforms as:

state A:
state.a.present:

group: ?? params.get('value') ?? ^^value^^ ??

state B:
state.b.present:

group: ?? params.get('value') ?? ^^value^^ ??

As you can see above, the original parameter context, as well as the original params.get() string, are well preserved
in the transformed YAML.

9.3.2 Step 2:- Extraction of parameters

This step involves extracting the parameters out of transformed YAML using relevant regular expressions. I have tried
to capture the details within the file idem/idem/validate/0001_find_params.py itself.

9.3.3 Step 3:- Tallying with meta section in SLS

This step is simply giving warnings if a parameter used in any given state doesn’t have a corresponding definition in
the meta section of the SLS. This is just for aiding the SLS writer so that he/she can add a meta section if it is missing.
Refer: idem/idem/validate/0010_validate_meta.py

9.3.4 Step 4:- Remapping transformed strings original values

This is simply mapping back transformed strings (e.g. ?? params.get('rg_name').get('your_rg',
'default') ?? ^^rg_name^^.~~your_rg ??) to original string (e.g. {{ params.get('rg_name').
get('your_rg', 'default') }}`). Refer: `idem/idem/validate/0020_reverse_map.py

26 Chapter 9. SLS Parameter Validation

idem Documentation

9.4 Sample Output

For your reference, here is the output of validate sub-command on the above SLS:

{
"high": {

"state A": {
"state.a.present": {

"group": "{{ params.get('value') }}"
},
"__sls__": "test"

},
"state B": {

"state.b.present": {
"group": "{{ params.get('value') }}"

},
"__sls__": "test"

}
},
"low": [

{
"state": "state.a.present",
"name": "state A",
"__sls__": "test",
"__id__": "state A",
"fun": "group",
"order": 1

},
{

"state": "state.b.present",
"name": "state B",
"__sls__": "test",
"__id__": "state B",
"fun": "group",
"order": 1

}
],
"meta": {

"SLS": {},
"ID_DECS": {}

},
"parameters": {

"GLOBAL": {
"value": ""

},
"ID_DECS": {

"test.state A": {
"value": ""

},
"test.state B": {

"value": ""
}

}
(continues on next page)

9.4. Sample Output 27

idem Documentation

(continued from previous page)

},
"warnings": {

"GLOBAL": [],
"ID_DECS": {

"test.state A": {
"params_meta_missing": [

"value"
]

},
"test.state B": {

"params_meta_missing": [
"value"

]
}

}
}

}

You can see above two new sections are added in validate sub-command output, viz. parameters and warnings.

9.5 Some Additional Samples

Some examples with SLS and corresponding validation output.

1. Iterating over list items:

{% for ruleId in params.get('ruleIds') %}
{{ ruleId }}:
securestate.rules_status.present:

- abc: def
{% endfor %}

{
"parameters": {

"GLOBAL": {
"ruleIds": ""

},
"ID_DECS": {

"resource_group.{{ params.get('ruleIds') }}": {
"ruleIds": ""

}
}

}
}

2. Iterating over dict items:

{% set ruleIds = params.get("ruleDict") %}
{% for key, value in ruleIds.items() %}
{{ key }}:
securestate.rules_status.present:

(continues on next page)

28 Chapter 9. SLS Parameter Validation

idem Documentation

(continued from previous page)

- x: value-{{ value }}
{% endfor %}

{
"parameters": {

"GLOBAL": {
"ruleDict": ""

},
"ID_DECS": {

"resource_group.key-{{ params.get('ruleDict') }}": {
"ruleDict": ""

}
}

}
}

3. General use case of calling a function:

{% set ruleIds = params.get("ruleIdsString") %}
{% for ruleId in ruleIds.split(',') %}
{{ ruleId }}:
securestate.rules_status.present:

- x: y
{% endfor %}

{
"parameters": {

"GLOBAL": {
"ruleIds": ""

},
"ID_DECS": {

"resource_group.{{ params.get('ruleIdsString') }}": {
"ruleIdsString": ""

}
}

}
}

9.5. Some Additional Samples 29

idem Documentation

30 Chapter 9. SLS Parameter Validation

CHAPTER

TEN

ARGUMENT BINDING REFERENCES

An argument binding reference sets the state definition argument value to the result of another state execution. In this
way, argument binding references determine the order of state execution in the structured layer state (SLS) file structure.

An argument binding reference uses the following format:

“${<cloud>:<state>:<property_path>}”

Where <cloud> is the state cloud path reference (excluding function reference), <state> is the state declaration ID, and
<property_path> is a colon (:) delimited path to the property value.

In the following example, State_B will be executed before State_A because the State_A argument “state_B_id” requires
the “ID” value from State_B output.

State_A:
cloud.instance.present:

- name: "Instance A"
- state_B_id: "${cloud:State_B:ID}"

State_B:
cloud.instance.present:

- name: "Instance B"

10.1 Indexes

An argument binding reference can contain an index to point to a specific element of a collection property, as shown
in the following example.

State_A:
cloud.instance.present:
- name: "Instance A"
- state_B_address: "${cloud:State_B:nics[0]:address}"

State_B:
cloud.instance.present:

- name: "Instance B"
- nics:

- network_name: "Network_1"
address is populated after state is executed
address:

- network_name: "Network_2"
address is populated after state is executed
address:

31

idem Documentation

An argument binding reference can contain a wildcard (*) index to collect all elements in a collection property. In the
following example, State_A “state_B_addresses” argument will be set to a list of 2 addresses, one address for each nic
of State_B.

State_A:
cloud.instance.present:
- name: "Instance A"
- state_B_addresses: "${cloud:State_B:nics[*]:address}"

State_B:
cloud.instance.present:
- name: "Instance B"
- nics:

- network_name: "Network_1"
address is populated after state is executed
address:

- network_name: "Network_2"
address is populated after state is executed
address:

10.2 “Resource” Contract

To support argument binding, a cloud plugin must implement a “resource” contract, where every state execution func-
tion must return a “new_state” property as part of the return dictionary. The “new_state” is used to resolve argument
binding requisites.

10.3 Arg_bind Requisites

Behind-the-scenes argument binding references are implemented using the Idem requisite system, where argument
binding references are parsed during the SLS compilation phase and added to high data as arg_bind requisites. During
arg_bind requisite execution, the “new_state” property returned after function execution is used to resolve the value of
the referenced parameter.

The following example demonstrates SLS high data after the compilation phase, where “${cloud:State_B:ID}” is re-
solved as the arg_bind requisite.

State_A:
cloud.instance.present:

- name: "Instance A"
- state_B_id: "${cloud:State_B:ID}"
- arg_bind:
- cloud:

- State_B
- ID: state_B_id

State_B:
cloud.instance.present:
- name: "Instance B"

32 Chapter 10. Argument Binding References

CHAPTER

ELEVEN

SLS INVERSION

In SLS function refs present and absent are complimentary to each other, and are used to ensure that a resource (cor-
responding to a state) gets created or gets deleted. Sometimes it is desirable to not write two different SLS files for just
creating and delting some states. This is where SLS inversion tries to help. Command line argument --invert can
be used to invert the behaviour of SLS file. However, this is not without limitations.

11.1 Motivation

The goal of SLS inversion is to use same SLS file to both create and delte resources as the case may be. All this can
be understood with help of an example:

Assure Resource Group Present test_group:
azure.resource_management.resource_groups.present:
- resource_group_name: test_group
- parameters:

location: eastus

In the above SLS, we are creating a resource group. In the usual case to delete the above resource group we need to
create a SLS file like so:

Assure Resource Group absent test_group:
azure.resource_management.resource_groups.absent:
- resource_group_name: test_group
- parameters:

location: eastus

With help of command-line parameter --invert we can create and delte the resource group using the same SLS, like
so:

$ tail rg_create.sls
Assure Resource Group Present test_group:
azure.resource_management.resource_groups.present:
- resource_group_name: test_group
- parameters:

location: eastus
$ idem state --output json rg_create.sls
{

"azure.resource_management.resource_groups_|-Assure Resource Group Present test_
→˓group_|-Assure Resource Group Present test_group_|-present": {

"changes": {
(continues on next page)

33

idem Documentation

(continued from previous page)

"new": {
"id": "/subscriptions/some-subscription/resourceGroups/test_group",
"name": "test_group",
"type": "Microsoft.Resources/resourceGroups",
"location": "eastus",
"properties": {

"provisioningState": "Succeeded"
}

}
},
"comment": "Created",
"name": "Assure Resource Group Present test_group",
"result": true,
"old_state": null,
"new_state": null,
"__run_num": 1

}
}
$ idem state --output json --invert rg_create.sls
{

"azure.resource_management.resource_groups_|-Assure Resource Group Present test_
→˓group_|-Assure Resource Group Present test_group_|-absent": {

"changes": {
"old": {

"id": "/subscriptions/some-subscription/resourceGroups/test_group",
"name": "test_group",
"type": "Microsoft.Resources/resourceGroups",
"location": "eastus",
"properties": {

"provisioningState": "Succeeded"
}

}
},
"comment": "Accepted",
"name": "Assure Resource Group Present test_group",
"result": true,
"old_state": null,
"new_state": null,
"__run_num": 1

}
}

In this manner we can reverse changes done by an existing SLS file without actually writing a seperate SLS file.

34 Chapter 11. SLS Inversion

idem Documentation

11.2 State Requisite Handling

With SLS inversion, all state requisites also get inverted, in a sense that the order of execution of states is reversed.
The idea behind this approach is to execute states in an inverted SLS in the reverse order of normal SLS. For example
consider the following SLS:

sleep_mid:
time.sleep:
- require:
- time: sleep_first

- duration: 1

sleep_end:
time.sleep:
- require:
- time: sleep_mid

- duration: 1

sleep_independent:
time.sleep:
- duration: 1

sleep_first:
time.sleep:
- duration: 1

11.2.1 Normal Run

In a normal run (without --invert) the order of execution will be

1. sleep_first, sleep_independent

2. sleep_mid

3. sleep_end

$ idem state --output json invert.sls
{

"time_|-sleep_independent_|-sleep_independent_|-sleep": {
"comment": [

"Successfully slept for 1 seconds."
],
"old_state": {},
"new_state": {},
"name": "sleep_independent",
"result": true,
"__run_num": 1

},
"time_|-sleep_first_|-sleep_first_|-sleep": {

"comment": [
"Successfully slept for 1 seconds."

],
"old_state": {},

(continues on next page)

11.2. State Requisite Handling 35

idem Documentation

(continued from previous page)

"new_state": {},
"name": "sleep_first",
"result": true,
"__run_num": 2

},
"time_|-sleep_mid_|-sleep_mid_|-sleep": {

"comment": [
"Successfully slept for 1 seconds."

],
"old_state": {},
"new_state": {},
"name": "sleep_mid",
"result": true,
"__run_num": 3

},
"time_|-sleep_end_|-sleep_end_|-sleep": {

"comment": [
"Successfully slept for 1 seconds."

],
"old_state": {},
"new_state": {},
"name": "sleep_end",
"result": true,
"__run_num": 4

}
}

11.2.2 Inverted Run

With a --invert command-line parameter the order of state execution will be:

1. sleep_end, sleep_independent

2. sleep_mid

3. sleep_first

$ idem state --output json --invert invert.sls
{

"time_|-sleep_end_|-sleep_end_|-sleep": {
"comment": [

"Successfully slept for 1 seconds."
],
"old_state": {},
"new_state": {},
"name": "sleep_end",
"result": true,
"__run_num": 1

},
"time_|-sleep_independent_|-sleep_independent_|-sleep": {

"comment": [
"Successfully slept for 1 seconds."

(continues on next page)

36 Chapter 11. SLS Inversion

idem Documentation

(continued from previous page)

],
"old_state": {},
"new_state": {},
"name": "sleep_independent",
"result": true,
"__run_num": 2

},
"time_|-sleep_mid_|-sleep_mid_|-sleep": {

"comment": [
"Successfully slept for 1 seconds."

],
"old_state": {},
"new_state": {},
"name": "sleep_mid",
"result": true,
"__run_num": 3

},
"time_|-sleep_first_|-sleep_first_|-sleep": {

"comment": [
"Successfully slept for 1 seconds."

],
"old_state": {},
"new_state": {},
"name": "sleep_first",
"result": true,
"__run_num": 4

}
}

11.3 Requirement

To make SLS inversion work, all manadatory parameters required for absent and present for any given state should be
present in the SLS, irrespective of actual function ref you are using. For example, the SLS file

Delete {{subnet}}:
aws.ec2.subnet.absent:
- name: {{VpcName}}

will not work with --invert command-line parameter. Since some mandatory parameters required by present are not
provided. If the parameters required by present are also provided like below, inversion will work as expected with or
without command-line parameter --invert.

Delete {{subnet}}:
aws.ec2.subnet.absent:
- name: {{VpcName}}
- vpc_id: {{VpcId}}
- cidr_block: 10.0.0.0/24
- availability_zone: us-east-1d
- tags:
- Key: Name
Value: one1

11.3. Requirement 37

idem Documentation

11.4 Limitations

While for some use cases --invert work well. It is not without limitations.

11.4.1 Argumnet binding does not work

Since argument binding involves uses output of one state to define input of another state, it doesn’t work with SLS
inversion.

38 Chapter 11. SLS Inversion

CHAPTER

TWELVE

JMESPATH

idem describe is able to filter it’s results using a tool called JMESpath. JMESpath is a query language for json.

When the --filter option is used with idem describe, the sls data gets changed into a format that is easy to use
with jmespath.

For example, a traditional sls state in json format looks like this:

{
"Description of test.succeed_with_comment": {

"test.succeed_with_comment": [
{"name": "succeed_with_comment"},
{"comment": None},

]
},

}

When performing a JMESpath search on the data, it first gets transformed to look like this:

[
{

"name": "Description of test.succeed_with_comment",
"ref": "test.succeed_with_comment",
"resource": [{"name": "succeed_with_comment"}, {"comment": None}],

},
]

The data has been flattened into an list of dictionaries and the keys “name”, “ref”, and “resource” have been added for
easy filtering. Don’t worry, the end result is turned back into the sls form unless you supply the –output=jmespath flag.

You can always run idem describe --output=jmespath without --filter to see what the internal jmespath
structure looks like.

12.1 Practicing with Static Data

Gathering data from the cloud can take a long time. When you are learning how to write JMESpaths, try writing a
small script like this one to practice on static data:

my_filter.py
import jmespath
import pprint
import sys

(continues on next page)

39

idem Documentation

(continued from previous page)

In this example, "data" is the output of "idem describe test --output=jmespath"
data = [

{
"name": "Description of test.anop",
"resource": [{"name": "anop"}],
"ref": "test.anop",

},
{

"name": "Description of test.configurable_test_state",
"resource": [

{"name": "configurable_test_state"},
{"changes": True},
{"result": True},
{"comment": ""},

],
"ref": "test.configurable_test_state",

},
{"name": "Description of test.describe", "resource": [], "ref": "test.describe"},
{

"name": "Description of test.fail_with_changes",
"resource": [{"name": "fail_with_changes"}],
"ref": "test.fail_with_changes",

},
{

"name": "Description of test.fail_without_changes",
"resource": [{"name": "fail_without_changes"}],
"ref": "test.fail_without_changes",

},
{

"name": "Description of test.mod_watch",
"resource": [{"name": "mod_watch"}],
"ref": "test.mod_watch",

},
{

"name": "Description of test.none_without_changes",
"resource": [{"name": "none_without_changes"}],
"ref": "test.none_without_changes",

},
{

"name": "Description of test.nop",
"resource": [{"name": "nop"}],
"ref": "test.nop",

},
{

"name": "Description of test.succeed_with_changes",
"resource": [{"name": "succeed_with_changes"}],
"ref": "test.succeed_with_changes",

},
{

"name": "Description of test.succeed_with_comment",
"resource": [{"name": "succeed_with_comment"}, {"comment": None}],

(continues on next page)

40 Chapter 12. JMESpath

idem Documentation

(continued from previous page)

"ref": "test.succeed_with_comment",
},
{

"name": "Description of test.succeed_without_changes",
"resource": [{"name": "succeed_without_changes"}],
"ref": "test.succeed_without_changes",

},
{

"name": "Description of test.treq",
"resource": [{"name": "treq"}],
"ref": "test.treq",

},
{

"name": "Description of test.update_low",
"resource": [{"name": "update_low"}],
"ref": "test.update_low",

},
]

search_path = sys.argv[1]
pprint.pprint(jmespath.search(search_path, data))

12.2 Examples

Now for some examples of filtering with JMESpath. I will use the format of idem describe test
--filter="<JMESpath>" in the following examples. If you called the little script we wrote above my_filter.
py then the following two commands are equivalent. Keep that in mind as you move your one-off experiments to idem
describe:

Equivalent commands
my_filter.py "<JMESpath>"
idem describe test --output=pretty --filter="<JMESpath>"

Return only the states that use test.update_low

idem describe test --filter="[?ref=='test.update_low']"

output: .. code-block:: yaml

Description of test.update_low:
test.update_low: - name: update_low

Return only the states that start with “test.succeed”

idem describe test --filter="[?starts_with(ref, 'test.succeed']"

output: .. code-block:: yaml

Description of test.succeed_with_changes:
test.succeed_with_changes: - name: succeed_with_changes

Description of test.succeed_with_comment:
test.succeed_with_comment: - name: succeed_with_comment - comment: null

12.2. Examples 41

idem Documentation

Description of test.succeed_without_changes:
test.succeed_without_changes: - name: succeed_without_changes

Return only tests that have “changes” in the state name:

idem describe test --filter="[?contains(name, 'changes')]"

output:

Description of test.fail_with_changes:
test.fail_with_changes:
- name: fail_with_changes

Description of test.fail_without_changes:
test.fail_without_changes:
- name: fail_without_changes

Description of test.none_without_changes:
test.none_without_changes:
- name: none_without_changes

Description of test.succeed_with_changes:
test.succeed_with_changes:
- name: succeed_with_changes

Description of test.succeed_without_changes:
test.succeed_without_changes:
- name: succeed_without_changes

Return only states that have “succeed_with_comment” in the “name” parameter

idem describe test --filter="[?resource[?name=='succeed_with_comment']]"

output:

Description of test.succeed_with_comment:
test.succeed_with_comment:
- name: succeed_with_comment
- comment: null

12.3 Learn More

https://jmespath.org/tutorial.html

https://jmespath.org/examples.html

https://jmespath.org/specification.html

https://pypi.org/project/jmespath

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/guide_jmespath.html

https://docs.microsoft.com/en-us/cli/azure/query-azure-cli

https://www.azurecitadel.com/cli/jmespath/

42 Chapter 12. JMESpath

https://jmespath.org/tutorial.html
https://jmespath.org/examples.html
https://jmespath.org/specification.html
https://pypi.org/project/jmespath
https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/guide_jmespath.html
https://docs.microsoft.com/en-us/cli/azure/query-azure-cli
https://www.azurecitadel.com/cli/jmespath/

CHAPTER

THIRTEEN

TRANSPARENT REQUISITES

Transparent requisites is a powerful feature inside of Idem. It allows requisites to be defines on a function by function
basis. This means that a given function can always requires any instance of another function, in the background. This
makes it easy for state authors to ensure that executions are always executed in the correct order without the end user
needing to define those orders.

It is easy to do, at the top of your system module just define the TREQ dict, this dict defines what functions will require
what other functions:

TREQ = {
"treq": {

"require": [
"test.nop",

]
},

}

This stanza will look for the function named treq inside of the module that it is defined in, then it will add require : -
test.nop for every instance found of test.nop in the current run. If test.nop is never used, then no requisites are set. Any
requisite can be used, and multiple requisites can be used.

13.1 Unique Transparent Requisite

Another type of transparent requisite is unique. A function can be declared unique to prevent concurrent executions.
The unique transparent requisite is significant in case of a parallel execution (default). TREQ dict at the top of the
system module define unique with a list of functions within the module.

TREQ = {
"unique": [

"test.create",
"test.delete",

]
}

In the example above, the instances of test.create within the current run will be invoked serially, and all the instances
of test.delete will be invoked serially. Instance of test.create and test.delete can be invoked in parallel. It is achieved by
selecting a single instance of the unique function, and setting the other instances of the same function as dependent on
it. During the next run, a new instance will be selected. The unique requisite is re-evaluated in each run.

43

idem Documentation

44 Chapter 13. Transparent Requisites

CHAPTER

FOURTEEN

SECURE MULTIPLE ACCOUNT MANAGEMENT

You can run Idem against multiple cloud accounts and providers. The Idem acct tool lets you specify cloud account
and provider information in a file. The acct tool is a dependency of Idem. It is used to encrypt the file that stores the
account information securely on the file system.

Support for file-based authentication was added as of Idem 6. Additional authorization mechanisms are expected in
future Idem releases.

14.1 Static Account Management

In this example, you create a file in which to store credentials. The file is a simple YAML file that can store credentials
for multiple providers and accounts.

The following example creds.yml file includes sample aws system values. The only profile shown is an aws default
profile, but you could have multiple sections with profiles for more providers and accounts.

aws:
default:
aws_access_key_id:
aws_secret_access_key:
region_name:

After creating the file with credentials in it, run the acct tool to encrypt the file:

$ acct encrypt creds.yml
New encrypted file created at: creds.yml.fernet
The file was encrypted with this key:
j-ytfz45n2wRUHDZJsumtG5_Dih3b3lTA1P2apqNuFg=

Now you have an encrypted credentials file and a key to access it. Keep the key in a safe place.

To run idem with credentials stored in the file, use the –acct-file and –acct-key options.

In addition, you can use the –acct-profile option to select a profile from within a credentials file that contains multiple
profiles. In the example above, default is the account profile.

If there are multiple profiles, and you don’t supply the –acct-profile option, the default profile is used.

If you don’t want to pass account information as CLI options, you can set the following environment variables:

export ACCT_FILE=<full path to creds.yml.fernet>
export ACCT_KEY=<creds file encryption key>

45

idem Documentation

14.2 ACCT RENDER PIPES

Before an acct_file is encrypted, it will be passed through the specified acct render pipes. The default render pipe is
“jinja|yaml”

$ idem encrypt credentials.yaml --render-pipe="jinja|yaml"

14.3 UNENCRYPTED ACCT FILE

If no ACCT_KEY is provided, then acct will assume that the ACCT_FILE is unencrypted.

For states/exec modules to specify a custom acct render pipe, it needs to be specified in the idem config file.

idem-config.cfg
acct:
render_pipe: jinja|yaml

14.4 ALLOWED_BACKEND_PROFILES

If the idem config file specifies allowed_backend_profiles, then only backend profiles with names in this list will be
processed by acct. The default is to process ALL acct backend profiles.

The following config file shows 3 profiles that are allow-listed in the idem config file:

idem-config.cfg
acct:
allowed_backend_profiles:
- allowed_backend_profile_name_1
- allowed_backend_profile_name_2
- allowed_backend_profile_name_3

The following unencrypted credentials file has multiple profiles for account backends under the “vault” and “lastpass”
providers. Each acct-backend profile contains other normal profiles for acct to use. For example, a vault acct-backend
may connect to a vault data store that contains acct profiles for connecting to aws and azure. The vault acct-backend
profile contains credentials for connecting to vault. The vault acct-backend plugin connects to vault and collects more
credentials for idem projects from vault. Only profile names that match the “acct:allowed_backend_profiles” config
option will be used to collect more credentials from the acct backend profiles. This way, a user can be selective about
which acct-backend to use in the case of conflicts.

$ idem exec test.ping --acct-file=credentials.yaml --config=idem-config.cfg

46 Chapter 14. Secure Multiple Account Management

idem Documentation

14.5 ACCT SERIAL PLUGIN

The pop-serial plugin that is used by acct to serialize acct data before it is encrypted can be specified in the idem config
file. The default plugin for serializing data in acct is “msgpack”:

idem-config.cfg
acct:
serial_plugin: msgpack

14.5. ACCT SERIAL PLUGIN 47

idem Documentation

48 Chapter 14. Secure Multiple Account Management

CHAPTER

FIFTEEN

ACCT FILE

In Idem, you can supply credentials for many different environments. Credentials are stored in a single encrypted file.
An account credentials file follows this pattern:

credential_provider_1:
profile_1:

key_1: value_1
key_2: value_2

profile_2:
key_1: value_1
key_2: value_2

credential_provider_2.acct_sub:
profile_1:

key_1: value_1
key_2: value_2

profile_2:
key_1: value_1
key_2: value_2

15.1 providers

In the account file, the first level of keys are the provider keys. For every system that uses ACCT for authentication,
there’s a top-level Python file that specifies the provider keys that are acceptable for authenticating to that system. The
general format for the Python code follows this pattern:

def __init__(hub):
hub.my_dyne.my_subsystem.ACCT = ["my_provider"]

The code above enables the “my_provider” provider keys to authenticate “my_dyne.my_subsystem”. “my_dyne” could
be “exec”, “states”, “tool”, “evbus”, “esm”, “sources”, or another dynamic namespace. “my_subsystem” is the root
folder name of your cloud-specific code under the dynamic namespace.

49

idem Documentation

15.2 acct plugins

Provider keys can specify an account plugin that performs additional processing for a profile. In the following example,
the aws.gsuite account plugin uses a Google username and password to obtain valid tokens and keys for idem-aws.

aws.gsuite:
my_profile:

username: my_google_user
password: my_google_password

15.3 profiles

The second level of keys in the account file are the profiles under each provider.

The default profile is usually named “default” if no other profile is named. The “default” name is only an optional
convention, not a requirement. Some components, like evbus, don’t use default profiles.

You can add multiple profiles under a provider, where each profile under the same provider has a unique name. Duplicate
profile names must be under different providers. For example, a “default” AWS profile and “default” Azure profile are
acceptable.

Profile names must match regex ‘[-.w]+’; for ASCII text, this includes a-z, A-Z, 0-9, _ . and -.

aws:
default:
id: XXXXXXXXXXXXXXXXX
key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
region: us-east-1

azure:
default:
client_id: "aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"
secret: "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
subscription_id: "bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb"
tenant: "cccccccc-cccc-cccc-cccc-cccccccccccc"

Each system specifies and uses profiles differently. See the evbus, state, sources, and esm documentation for details on
how each specifies and uses profiles.

15.4 backends

External credential stores can also contain account profile information. In the account file, these are specified under
the “acct-backend” top-level key:

acct-backend:
lastpass:

username: user@example.com
password: password
designator: acct-provider

keybase:
username: user
password: password

50 Chapter 15. ACCT FILE

https://gitlab.com/vmware/idem/idem-aws/-/blob/master/idem_aws/acct/aws/gsuite.py

idem Documentation

15.5 extras

Some plugins make use of non-secret values in their authentication methods. These are specified in the Idem config
file under acct.extras.

acct:
extras:
my_provider:
my_profile:
my_key: my_non_secret_value

In code, you access extras via hub.OPT as shown in the following example:

def gather(hub, provider: str, profile: str) -> dict:
return hub.OPT.acct.extras[provider][profile]

15.5. extras 51

idem Documentation

52 Chapter 15. ACCT FILE

CHAPTER

SIXTEEN

IGNORE_CHANGES REQUISITE

ignore_changes can be used in sls blocks to prevented parameters to be updated on brown-field resources. If a parameter
is specified under the ignore_changes and this parameter will be overridden with None and present() function will ignore
updating such None-value parameters.

In the following example, State_A is a green-field resource. During the first Idem run, Idem will create State_A resource
with the tags value. However, since ignore_changes contains “tags”, during the second Idem run to update the State_A
resource, Idem will not update tags even when the tags of the resource has been deviated away from the initial {tag-key:
tag-value} value.

State_A:
cloud.instance.present:

- name: my-resource
- tags: {tag-key: tag-value}
- ignore_changes:
- tags

Nested data under a parameter can be specified with a syntax similar to what arg_binding use: ‘:’ for traversing a
dict structure and ‘[]’ for traversing a list. In addition, ‘[*]’ can be used to traverse through all elements in a list. For
example: Given the tags input below, if we want to just ignore changing tag1, we can do tags[0]. Though, we need to
be careful on ignoring list type data with indexing here, since the order of list elements is not guaranteed in Idem.

tags:
- Name: tag1
Value: value1

- Name: tag2
Value: value2

If the parameter path under ignore_changes is invalid, Idem will output a warning message but it won’t fail the resource
management operation.

Note: ignore_changes requisite only takes into effect on a brown-field resource. That is, the enforced State_A exists in
ESM cache or the resource_id has been supplied in sls file.

53

idem Documentation

54 Chapter 16. ignore_changes Requisite

CHAPTER

SEVENTEEN

RECREATE_ON_UPDATE REQUISITE

When Idem can’t update an existing resource, use recreate_on_update to delete the resource and recreate it.

In the following examples, State_A isn’t supported for updates. The only way to update values in State_A is to create
a new resource and delete the one that has the old values. name_prefix argument is used to create a unique name
beginning with the specified prefix for State_A.

17.1 Greenfield Example 1

In the following greenfield example, State_B is dependent on State_A output. State_B parameter_2 requires the State_A
resource_id.

Because this is a greenfield deployment, and State_A will be new, the recreate_on_update shown in State_A is
never activated.

State_A:
cloud.instance.present:
- name_prefix: my-resource-A
- parameter_1: value-1
- parameter_2: value-2
- ignore_changes:
- parameter_2

- recreate_on_update:
create_before_destroy: true

State_B:
cloud.instance.present:
- name: Instance-B
- parameter_1: value-1
- parameter_2: "${cloud:State_A:resource_id}"

With this setup Idem generates a unique name for your State_A and can then update the State_B without conflict before
destroying the previous State_A.

The console output for the example is:

ID: State_A
Function: cloud.instance.present
Result: True
Comment: ("Created cloud.instance 'my-resource-A-1'",)
Changes:

(continues on next page)

55

idem Documentation

(continued from previous page)

new:

name:
my-resource-A-1

name_prefix:
my-resource-A

resource_id:
my-resource-A-1

parameter_1:
value-1

parameter_2:
value-2

ID: State_B
Function: cloud.instance.present
Result: True
Comment: ("Created cloud.instance 'Instance-B'",)
Changes:
new:

name:
Instance-B

parameter_1:
value-1

parameter_2:
my-resource-A-1

17.2 Brownfield Example 1

In the following brownfield example, State_A needs to update its parameter_1 value. Because this is a brownfield
example, and State_A isn’t supported for updates, it must be recreated with the new value.

Note that create_before_destroy is set to true so that Idem can create the new State_A resource, supply its re-
source_id to State_B, and delete the old State_A resource afterward. Without create_before_destroy being true,
there might have been a gap during which State_B couldn’t get the resource_id.

State_A:
cloud.instance.present:
- name_prefix: my-resource-A
- resource_id: my-resource-A-1
- parameter_1: value-1-updated
- parameter_2: value-2
- ignore_changes:
- parameter_2

- recreate_on_update:
create_before_destroy: true

State_B:
cloud.instance.present:

(continues on next page)

56 Chapter 17. recreate_on_update Requisite

idem Documentation

(continued from previous page)

- name: Instance-B
- parameter_1: value-1
- parameter_2: "${cloud:State_A:resource_id}"

The console output for the example is:

ID: State_A
Function: cloud.instance.present
Result: True
Comment: ("Created cloud.instance 'my-resource-A-2'",)
Changes:
new:

name:
my-resource-A-2

name_prefix:
my-resource-A

resource_id:
my-resource-A-2

parameter_1:
value-1-updated

parameter_2:
value-2

ID: State_B
Function: cloud.instance.present
Result: True
Comment: ("Updated cloud.instance 'Instance-B'",)
Changes:
old:

parameter_2:
my-resource-A-1

new:

parameter_2:
my-resource-A-2

ID: State_A_delete_old
Function: cloud.instance.present
Result: True
Comment: ("Deleted cloud.instance 'State_A_delete_old'",)
Changes:
old:

name:
State_A_delete_old

name_prefix:
my-resource-A

resource_id:
(continues on next page)

17.2. Brownfield Example 1 57

idem Documentation

(continued from previous page)

my-resource-A-1
parameter_1:

value-1
parameter_2:

value-2

17.3 Brownfield Example 2

In the following brownfield example, State_A needs to update its parameter_1 value. State_A isn’t supported for
updates, so it must be recreated with the new value.

In this case, State_A doesn’t have any dependent resources, so create_before_destroy can be false. Idem can safely
delete the old State_A resource before creating the new one.

State_A:
cloud.instance.present:
- name_prefix: my-resource-A
- resource_id: my-resource-A-1
- parameter_1: value-1-updated
- parameter_2: value-2
- ignore_changes:
- parameter_2

- recreate_on_update:
create_before_destroy: false

The console output for the example is:

ID: State_A_delete_old
Function: cloud.instance.present
Result: True
Comment: ("Deleted cloud.instance 'State_A_delete_old'",)
Changes:
old:

name:
State_A_delete_old

name_prefix:
my-resource-A

resource_id:
my-resource-A-1

parameter_1:
value-1

parameter_2:
value-2

ID: State_A_create_new
Function: cloud.instance.present
Result: True
Comment: ("Created cloud.instance 'my-resource-A-2'",)

(continues on next page)

58 Chapter 17. recreate_on_update Requisite

idem Documentation

(continued from previous page)

Changes:
new:

name:
my-resource-A-2

name_prefix:
my-resource-A

resource_id:
my-resource-A-2

parameter_1:
value-1-updated

parameter_2:
value-2

17.4 Greenfield Example 2

In the following greenfield example, State_A will be newly created, including its tags. Remember, State_A is still
unsupported for updates.

Because ignore_changes contains tags, if tag keys or values have drifted from their newly created states, a
subsequent Idem run to bring the resource back into tag compliance won’t recreate the resource, even though
recreate_on_update is present.

Note that, in addition, the subsequent run won’t bring the tag keys or values back into compliance.

State_A:
cloud.instance.present:

- name_prefix: my-resource
- tags: {tag-key: tag-value}
- ignore_changes:
- tags

- recreate_on_update:
create_before_destroy: false

17.4. Greenfield Example 2 59

idem Documentation

60 Chapter 17. recreate_on_update Requisite

CHAPTER

EIGHTEEN

USING A DELAY BETWEEN STATES TO RESOLVE JINJA TEMPLATE
ARGUMENT BINDING

Idem SLS files support a dependency delay between states, where a state isn’t rendered until a preceding state has been
rendered:

State_A:
test.nop

#!require: State_A
State_B:
test.nop

You can use a delay to parse and process an argument binding reference in a Jinja template. A Jinja template argument
binding reference follows this pattern:

{% for key,value in hub.idem.arg_bind.resolve('${<cloud>:<state>}').items() %}
{{ value }}

{% endfor %}

In the following example, State_B includes a Jinja template argument binding reference that needs a value from State_A.
The #!require:State_A delay forces the rendering of State_B to first wait for State_A to be rendered, which makes its
Name tag value available to State_B.

State_A:
cloud.subnetwork.search:
- tags: {Name: {% params.get("pvt_subnetwork_name") %}}

#!require:State_A

State_B:
cloud.private_cloud_attachment.present:
- name: "Private cloud B"
- subnetwork_ids: {% subnetwork_ids=[] %} {% for k,v in hub.idem.arg_bind.resolve('$

→˓{cloud.subnetwork:State_A}').items() %} {{ subnetwork_ids.append(v["resource_id"]) }} {
→˓% endfor %}

61

idem Documentation

18.1 Fetching argument binding reference values

For a Jinja template containing an argument binding reference to be rendered, the argument binding must be passed
to custom function hub.idem.arg_bind.resolve() as a string. The function parses the argument binding template and
resolves the value.

The new_state of the prerequisite block executed states should be available in hub.idem.RUNS[name][“running”]
using the argument binding references in Jinja that were resolved in the rend subsystem.

For List, data resolution happens as below - The target ‘foo:bar:[0]’ or ‘foo:bar[0]’ will return data[‘foo’][‘bar’][0] if
data like {‘foo’:{‘bar’:[‘baz’]}}

For Dict, data resolution happens as below - The target ‘foo:bar:0’ will return data[‘foo’][‘bar’][0] if data like
{‘foo’:{‘bar’:{‘0’:’baz’}}}

62 Chapter 18. Using a delay between states to resolve Jinja template argument binding

CHAPTER

NINETEEN

DELAYED RENDERING

By default, the states in Idem SLS files are rendered, compiled, and executed all at once. If you need to separate them,
Idem supports a dependency delay between states.

To render states separately, add the following line before the state that you need to delay.

#!require:<prerequisite_state>

In the following example, State_B isn’t rendered until State_A has been rendered:

State_A:
test.nop

#!require: State_A
State_B:
test.nop

19.1 Closing a delayed state block

Expanding on the preceding example, if you have State_C that’s safe to run in parallel with State_A, you can close the
delayed State_B block:

State_A:
test.nop

#!require: State_A
State_B:
test.nop

#!END
State_C:
test.nop

Otherwise, both State_B and State_C render after State_A.

If no #!END is provided, all blocks close at the end of the SLS file.

63

idem Documentation

64 Chapter 19. Delayed rendering

CHAPTER

TWENTY

SENSITIVE REQUISITE

Sensitive requisite can be used in sls blocks to prevented parameters to be outputted to console.

For Idem state resources that implement the “resource” contract, parameters specified under the sensitive requisite are
hidden from the “changes” output.

In the following example, State_A uses sensitive requisite to hide its secret from “changes” output.

State_A:
cloud.instance.present:

- name: my-resource
- public: public-data
- secret: secret-data
- sensitive:
- secret

Assume present() does a creating operation, the console output of this Idem run will be:

changes:
new:
name: my-resource
public: public-data

Note: sensitive requisite only hides data in “changes” that is outputted to console. All data will still be saved into ESM
cache in plain text.

65

idem Documentation

66 Chapter 20. Sensitive Requisite

CHAPTER

TWENTYONE

SLS ACCT

Each state in an SLS file defaults to using the “default” profile for the associated provider.

Idem determines which profile is appropriate by looking for ACCT on the hub in the root of the state definition. For
example, in idem_aws/states/aws/init.py we might see the following code:

def __init__(hub):
hub.states.aws.ACCT = ["aws"]

The code specifies that all plugins under hub.states.aws should use profiles under the “aws” provider key in the
account file.

An account file with AWS credentials might look like this:

aws:
default:
id: XXXXXXXXXXXXXXXXX
key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
region: us-east-1

other:
id: XXXXXXXXXXXXXXXXX
key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
region: us-east-1

A single SLS file can reference multiple AWS credential profiles as shown in the following example:

No profile is specified, so the "default" AWS profile is used.
ensure_vpc:
aws.vpc.present:

- kwarg1: value1

The "other" AWS profile is specified for use.
ensure_vpc:
aws.vpc.present:

- acct_profile: other
- kwarg1: value1

States from one cloud can depend on states from another cloud. Idem will associate the right profiles with the right
plugins and keep the profiles separate in their own contexts.

Consider the following multi-cloud account file:

aws:
default:

(continues on next page)

67

idem Documentation

(continued from previous page)

id: XXXXXXXXXXXXXXXXX
key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
region: us-east-1

azure:
default:
client_id: "aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"
secret: "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
subscription_id: "bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb"
tenant: "cccccccc-cccc-cccc-cccc-cccccccccccc"

Profiles under the “aws” provider are only sent to plugins that specify the “aws” provider for authenticaton. Profiles
under the “azure” provider are only sent to plugins that specify the “azure” provider for authenticaton.

The "default" "aws" profile is used.
ensure_vpc:
aws.vpc.present:

- kwarg1: value1

The "default" "azure" profile is used.
ensure_vpc:
azure.vpc.present:

- kwarg1: value1

In this way, Idem seamlessly integrates multiple requisites and profiles across different clouds, all within a single SLS
file.

21.1 Aggregate State

You can dynamically extend account information using the acct.profile state. In the following example, test.
present represents data from an arbitrary resource. Its values are passed via arg_bind to an acct.profile state.
The third state requires the new_profile state and then makes use of the profile created in that state.

Warning: Use this feature with arg_binding to use information generated in one state as credentials in other states.
You can use the feature to create roles and dynamically assume those roles in subsequent states. Do NOT use this
feature to bypass encrypting your credentials file. Exercise caution and do not abuse this feature.

mock_acct:
test.present:
- new_state:

key_1: value_1
key_2: value_2

new_profile:
acct.profile:
- provider_name: test
- key_1: ${test:mock_acct:key_1}
- key_2: ${test:mock_acct:key_2}

test_result:
(continues on next page)

68 Chapter 21. SLS ACCT

idem Documentation

(continued from previous page)

test.acct:
- acct_profile: new_profile
- require:
- acct: new_profile

Note: This can also be done without “require” blocks by using the reconciliation loop.

21.2 Single-use Profiles

In the following code block, acct_data is passed directly into the state. The profiles defined here will be used in place
of all the profiles defined for the rest of the RUN. This acct_data is not preserved and only exists in the context of the
state that uses it.

mock_acct:
test.present:
- new_state:

key_1: value_1
key_2: value_2

test_result:
test.acct:
- acct_profile: new_profile
- acct_data:

profiles:
test:
new_profile:
key_1: ${test:mock_acct:key_1}
key_2: ${test:mock_acct:key_2}

If arg_binding is not required, account data that isn’t sensitive can be saved in a Jinja variable and explicitly passed to
each state that needs it. However, you get better value and security from writing an acct plugin.

{% set acct_data = {"profiles": {"test": {"new_profile": {"key_1": "value_1", "key_2":
→˓"value_2"}}}} %}

test_result:
test.acct:
- acct_profile: new_profile
- acct_data: {{acct_data}}

21.2. Single-use Profiles 69

https://gitlab.com/vmware/idem/acct/-/blob/master/docs/topics/plugins.rst

idem Documentation

21.3 Copy From Existing Profiles

To copy from an existing profile, specify the “source_profile” key in the acct.profile state. The profile matching
the “source_profile” name under the given provider will be used as a base for constructing the new profile.

Consider the following acct_file:

test:
source:
key_1: overwritten
key_3: copied

The following state copies the existing profile under the given provider in the acct_file. “key_1” is defined in both
places, so the new profile will overwrite that value. “key_3” is not defined in the new_profile, so it will be copied from
the existing profile in the acct_file to the new profile.

new_profile:
acct.profile:
- provider_name: test
- source_profile: source
- key_1: value_1
- key_2: value_2

test_result:
test.acct:
- acct_profile: new_profile
- require:
- acct: new_profile

70 Chapter 21. SLS ACCT

CHAPTER

TWENTYTWO

SLS SOURCES

SLS sources are directory trees, archives, and remote stores that contain sls files. SLS and param sources can come
from many different places. The plugins that can be used to process SLS sources are in idem/idem/sls.

The format for an sls sources is:

<protocol>://<resource>

The format for authenticated sls sources is:

<protocol_plugin>://<acct_profile>@<resource>

The named acct profile associated with the protocol_plugin provider will have its values passed to ctx.acct of the
appropriate “cache” function.

File sources that have a mimetype, such as zip files, will be unarchived before further processing.

This is an example of an idem config file that specifies sls_sources and param_sources:

idem:
sls_sources:
- file://path/to/sls_tree
- file://path/to/sls_source.zip
- git://github.com/my_user/my_project.git
- git+http://github.com/my_user/my_project.git
- git+https://github.com/my_user/my_project.git

param_sources:
- file://path/to/sls_tree
- file://path/to/sls_source.zip
- git://github.com/my_user/my_project.git
- git+http://github.com/my_user/my_project.git
- git+https://github.com/my_user/my_project.git

sls_sources and param_sources can also be specified from the CLI.

$ idem state my.sls.ref \
--sls-sources \
"file://path/to/sls_tree" \
"file://path/to/sls_source.zip" \
"git://github.com/my_user/my_project.git" \
"git+http://github.com/my_user/my_project.git"
"git+https://github.com/my_user/my_project.git"
--param-sources \
"file://path/to/sls_tree" \

(continues on next page)

71

idem Documentation

(continued from previous page)

"file://path/to/sls_source.zip" \
"git://github.com/my_user/my_project.git"
"git+http://github.com/my_user/my_project.git"
"git+https://github.com/my_user/my_project.git"

72 Chapter 22. SLS Sources

CHAPTER

TWENTYTHREE

THE SLS TREE

SLS files can be arranged in a tree fo easy maintinence and development. This allows you to arrange your Idem code in
a way that makes it easy to keep track of things, but also makes it easy to modify other SLS files, make code reuasable,
and more!

When you run Idem and just give it a file to run, it assumes that your SLS tree is rooted in that file’s directory. This
makes it easy to make multiple files that can be called together while just starting from an easy to find entry point.

Lets assume that you run idem state start.sls in a directory called idem/. Then you have defined that the directory called
idem/ is the root of your SLS tree. Now all of the SLS references inside include directives are references relative to the
idem/ directory.

SLS tree paths are resolved in one of two ways. An SLS reference of foo.bar will resolve to either foo/bar.sls or to
foo/bar/init.sls. This allows for code to be easily organized into directories that contain groupings of code.

73

idem Documentation

74 Chapter 23. The SLS Tree

CHAPTER

TWENTYFOUR

EXEC STATE

Exec modules can be run from SLS using the “exec.run” state. The return from the exec module is put in the state’s
“new_state”, so it can be used in arg_binding. The first comment in the exec module state return is the cli command
that can be used to call the exec module. The path is the reference path to the exec module. An exec module named
“func” in the directory “project_root/project/exec/exec_sub/plugin.py” has a path of “exec.exec_sub.plugin.func”. It
can be accessed on the hub via “hub.exec.exec_sub.plugin.func()”. The path that should be passed to the exec.run
state would be “exec_sub.plugin.func” The acct_profile will be used to create a ctx based on the appropriate provider
for the given path.

exec_func:
exec.run:
- path: test.more
- acct_profile: default
- args:
- arg1
- arg2
- arg3

- kwargs:
kwarg_1: val_1
kwarg_2: val_2
kwarg_3: val_3

Output of running the state with --output=json:

{
"exec_|-exec_func_|-exec_func_|-run": {

"tag": "exec_|-exec_func_|-exec_func_|-run",
"name": "exec_func",
"changes": {},
"new_state": {

"args": [
"arg1",
"arg2",
"arg3"

],
"kwargs": {

"kwarg_1": "val_1",
"kwarg_2": "val_2",
"kwarg_3": "val_3"

},
"ctx": {

"acct": {}
(continues on next page)

75

idem Documentation

(continued from previous page)

}
},
"old_state": {},
"comment": [

"idem exec test.more --acct-profile=default arg1 arg2 arg3 kwarg_1=val_1 kwarg_
→˓2=val_2 kwarg_3=val_3"

],
"result": true,
"esm_tag": "exec_|-exec_func_|-exec_func_|-",
"__run_num": 1,
"start_time": "2022-05-31 15:08:13.548936",
"total_seconds": 0.001457
}

}

76 Chapter 24. Exec State

CHAPTER

TWENTYFIVE

SLS RESOLVER PLUGINS - HUB.SOURCE

Idem SLS resolvers are very easy to write and can often work in just a few lines of code. They are implemented in a
nested pop subsystem under idem, this means that you can vertical app-merge these plugins into idem if that makes the
most sense.

The vast majority of the work to gather SLS files is completely generic, so adding new sources should be very easy.
For instance, the code to load from the filesystem is just a few lines of code.

First create a directory at my_project_root/my_provider/source. In your project’s conf.py, extend idem’s namespace
with your “source” directory.

my_project_root/my_provider/conf.py
DYNE = {"source": ["source"]}

Now create a plugin in your “source” directory.

The plugin simply needs to implement the cache async function. This function receives the hub, protocol, source, and
loc. These will be passed into the function.

The protocol is usually just the name of the resolver plugin. Sometimes it will contain an additional protocol like
“git+https”

The source is the root path to pull the file from. In the case of the file resolver this will be file:///path/to/sls/root.

The location or location is the desired file location relative to the source.

my_project_root/my_provider/source/my_provider.py

Generic python imports
from typing import ByteString
from typing import Tuple
import tempfile

try:
Import plugin-specific libraries here
import my_provider.sdk

HAS_LIBS = (True,)
except ImportError as e:

HAS_LIBS = False, str(e)

def __virtual__(hub):
Perform other dependency checks as needed here I.E check for "git" or "fuse"␣

→˓installed via the OS
(continues on next page)

77

idem Documentation

(continued from previous page)

return HAS_LIBS

The virtualname is how the provider will appear on the hub,
use this to avoid clashes with python module names and python keywords
__virtualname__ = "my_provider"

def __init__(hub):
This tells idem that the "my_provider" key in the acct file contains profiles for␣

→˓this plugin
hub.source.my_provider.ACCT = ["my_provider"]

async def cache(
hub, ctx, protocol: str, source: str, location: str

) -> Tuple[str, ByteString]:
"""
Read data from my_provider
:param hub:
:param ctx: ctx.acct will contain the appropriate credentials to connect to my sls␣

→˓source's sdk
:param source: The url/path/location of this sls source
:param location: The path/key to access my SLS data relative to the source

Define what credentials should be used in a profile for "my_provider"

.. code-block:: sls

my_provider:
my_profile:
my_kwarg_1: my_val_1
other_arbitrary_kwarg: arbitrary_value

"""
ctx.acct will have the credentials for the profile specified in the sls-sources/

→˓params-sources string
data: bytes = my_provider.sdk.read(**ctx.acct)

There are two ways we can pass the sources on to idem
if "option 1":

Store the data returned from the sdk in memory (preferred method)
return f"{location}.sls", data

elif "option 2":
Cache the data returned from the sdk in a temporary location
with tempfile.NamedTemporaryFile(suffix=".sls", delete=True) as fh:

fh.write(data)
fh.flush()
Process the cached data like a traditional sls file source
return await hub.source.file.cache(

ctx=None, protocol="file", source=fh.name, location=location
)

78 Chapter 25. SLS Resolver Plugins - hub.source

idem Documentation

Your sls source can be invoked from the CLI like so:

$ idem state location --sls-sources "my_provider://my_profile@<source>" --params-sources
→˓"my_provider://my_profile@<source>"

79

idem Documentation

80 Chapter 25. SLS Resolver Plugins - hub.source

CHAPTER

TWENTYSIX

GROUP PLUGINS - HUB.GROUP

Group plugins are capable of organizing and manipulating the return data of an idem run before it is rendered.

26.1 Finding Group Plugins

Use idem doc to list all the available group plugins:

$ idem doc group | grep -o "^group.\w*"

You can also use jq to list plugins next to their doc strings:

$ idem doc group --output=json | jq -r '. | keys[] as $k | "\($k): \(.[$k].doc)"'

At the time of writing, with no extra plugins installed, this is the result of that command:

group.duration.apply: Sort the output by the total seconds of the state's run time
group.init.apply: Apply all group plugins specified in config
group.number.apply: Sort the data by run number
group.omit_noop.apply: Remove states that reported success without changes
group.sort.apply: Reorganize the data by sorting by each state's unique tag

26.2 Using Group Plugins

Group plugins are specified in a single string and are separated by a pipe. Each group plugin will be run in the order
that it is defined.

Group plugins can be specified on the cli with the “–group” flag.

$ idem state my_state.sls --group="number|omit_noop"

Group plugins can also be specified in the idem config.

idem.cfg
idem:
group: number|omit_noop

81

idem Documentation

26.3 Creating a Group Plugin

First create a directory at my_project_root/my_provider/group. In your project’s conf.py, extend idem’s namespace
with your “group” directory.

my_project_root/my_provider/conf.py
DYNE = {"group": ["group"]}

Now create a plugin in your “source” directory.

The plugin simply needs to implement the apply function. This function receives the hub, and data arguments. These
will be passed into the function.

data contains the full results of a state run. Here are the contents of data for a run containing a single state:

{
"resource_ref_|-state_block_name_|-state_name_|-function": {

"tag": "resource_ref_|-state_block_name_|-state_name_|-function",
"name": "state_name",
"changes": {},
"new_state": {},
"old_state": {},
"comment": None,
"rerun_data": None,
"result": True,
"esm_tag": "resource_ref_|-state_block_name_|-state_name_|-",
"__run_num": 1,
"start_time": "2022-08-15 09:39:33.608291",
"total_seconds": 0.001207,
"sls_meta": {"SLS": {}, "ID_DECS": {}},

},
}

This is what a basic group plugin looks like:

my_project_root/my_provider/group/my_plugin.py
from typing import Any
from typing import Dict

def apply(hub, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Re-organize/filter the state runtime results from "data"
"""
initialize an ordered dictionary for the return (All dictionaries are ordered␣

→˓after python 3.7)
ret = {}
iterate over the state return data in the order you want to add it to the return
for tag in data:

retrieve the result of a single state
state_ret = data[tag]
Break the state tag into it's component parts
comps = tag.split("_|-")
state = comps[0]

(continues on next page)

82 Chapter 26. Group plugins - hub.group

idem Documentation

(continued from previous page)

id_ = comps[1]
fun = comps[3]
"result" is True if the state ran successfully, otherwise it is False
result = state_ret.get("result")
Any comment(s) from the running state
comment = state_ret.get("comment")
An empty dictionary if there were no changes, else a comparison of "new" and

→˓"old" state of the resource
changes = state_ret.get("changes", {})
The state of the resource before the function ran
old_state = state_ret.get("old_state", {})
The state of the resource after the function ran
new_state = state_ret.get("new_state", {})

omit this state ret from the return data based on any of the previous␣
→˓information

if not True:
continue

Copy the state ret from the input data to the return data
ret[tag] = data[tag]

return ret

26.3. Creating a Group Plugin 83

idem Documentation

84 Chapter 26. Group plugins - hub.group

CHAPTER

TWENTYSEVEN

RECONCILIATION LOOP

Reconciliation loop re-executes the states until all states are successfully realized or no progress is made.

27.1 Reconciler Plugin

The reconciler plugin provided by idem is called ‘basic’. Idem reconciliation loop will re-apply pending states. It stops
if none of the states is “pending” or if results/changes have not changed during the last 3 iterations.

27.2 Loop Implementation

To implement a reconciler plugin, provide a method like this:

from typing import Dict, Any

async def loop(
hub,
pending_plugin; str,
name: str,
apply_kwargs: Dict[str, Any],
):
...

The reconciler loop should return a dictionary like this:

{
"re_runs_count": <number reconciliation loop iterations>,
"require_re_run": <True or False>,

}

85

idem Documentation

27.3 Reconciliation Wait Time

Reconciliation wait time is the sleep time between loop iteration. Each state can define a separate reconciliation wait
time in seconds. For each iteration of the reconciliation loop, the wait time is re-calculated for the pending states, and
the longest wait time value is used. By default, the idem reconciler plugin uses 3 seconds wait time unless defined by
the state.

Idem supports three algorithms for calculating the wait time:

• static

• random

• exponential

27.3.1 Static

Fixed wait time value defined on the state, which remains the same for all iterations. For example:

__reconcile_wait__ = {"static": {"wait_in_seconds": 10}}

The default value is static of 3 seconds.

27.3.2 Random

Random wait time expects minimum and maximum values and generates a random number in that range (inclusive).
It is defined in the state like this:

__reconcile_wait__ = {"random": {"min_value": 1, "max_value": 10}}

In this example, a random number from 1 to 10 is generated before each reconciliation iteration.

27.3.3 Exponential

A wait time that increases for every reconciliation iteration. The exponential wait time is calculated based on this
formula:

wait_in_seconds * (multiplier ^ run_count)

Where ‘run_count’ is the number of the iteration. The default value is 0. For example:

__reconcile_wait__ = {"exponential": {"wait_in_seconds": 2, "multiplier": 10}}

In the example, exponential wait times are: 2, 20, 200. . .

86 Chapter 27. Reconciliation Loop

idem Documentation

27.4 Pending plugin

Pending plugin is used to determine whether a state is in a “pending” state that requires reconciliation, which would
re-apply the state.

To implement a pending plugin, provide a method like this:

def is_pending(hub, ret):

is_pending returns True if more reconciliation is needed, otherwise False.

The default implementation is defined in default.py, and returns False if ‘result=True’ and there are no ‘changes’,
where ‘changes’ is the delta between the previous state and the required state.

27.5 CLI

The reconciler plugin and pending plugin are specified as an argument to the idem state CLI.

For example:

--reconciler=basic | -R=basic | -r=basic
--pending=default | -P=default | ip=default

Reconciliation loop is enabled by default, to disable it use –reconciler=none.

27.6 Batch Function

Reconciliation loop can also be run in a batch command. For example:

hub.pop.Loop.run_until_complete(
hub.idem.state.batch(

states=states,
name=name,
runtime="serial",
renderer="json",
test=False,
encrypted_profiles=encrypted_profiles,
acct_key=acct_key,
default_acct_profile="default",
reconcile_plugin="basic",
pending_plugin="default",

)
)

27.4. Pending plugin 87

idem Documentation

27.7 Notes

• There is no reconciliation for exec commands (exec.run) that are successful.

• There is no reconciliation during ‘test’ invocations (–test=True).

88 Chapter 27. Reconciliation Loop

CHAPTER

TWENTYEIGHT

ENFORCED STATE MANAGEMENT

Enforced state management (ESM) lets Idem track resources across runs. ESM makes it possible for resources that
aren’t natively idempotent to become idempotent through their unique present state name.

In the given context, the previous state (old_state) will be enforced with the following logic:

• Parameters for a resource in the given SLS file will have the highest priority

• If a parameter is not defined in the SLS, it will be pulled from the old_state of the previous run

• If there is no old_state or the parameter is not in old_state, then the default from the python function header will
be used.

28.1 Local cache

The default ESM plugin keeps a local cache of the enforced state. The local cache is based on the --root-dir,
--cache-dir, and --run-name cli arguments. Alternatively the root_dir, cache_dir, and run_name variables
can be set in idem’s config. The default root_dir is / when running idem as root, otherwise it is ~/.idem . The default
cache_dir is cache under root_dir/var; see below for examples:

If the run_name is cli (the default), then the local ESM plugin will store it’s cache in ~/.idem/var/cache/idem/
esm/local/cli.mspgack. The ESM cache would be in ~/.idem/var/cache/idem/esm/cache/cli.mspgack.

The cache contains the “new_state” data of state runs. Every key in the cache is a tag based on the state name, the state
id, and the the state’s name.

For a state that looks like this:

state_id:
cloud.resource.present:
name: state_name

The tag generated to track that state’s “new_state” in the cache would look like this:

``cloud.resource_|-state_id_|-state_name_|-``

89

idem Documentation

28.2 Idem states

State modules that return “old_state” and “new_state” will have “new_state” available in the ctx of future runs.

my_project_root/my_project/state/my_plugin.py

__contracts__ = ["resource"]

def present(hub, ctx, name):
ctx.old_state contains the new_state from the previous run
When ctx.test is True, there should be no changes to the resource, but old_state␣

→˓and new_state should reflect changes that `would` be made.
new_state = ...

return {
"result": True,
"comment": "",
"old_state": ctx.old_state,
"new_state": new_state,

}

def absent(hub, ctx, name):
ctx.old_state contains the new_state from the previous run
return {"result": True, "comment": "", "old_state": ctx.old_state, "new_state": {}}

def describe(hub, ctx, name):
...

28.3 Unlock Idem state run

When a state is run using an esm provider other than the local default (such as AWS) a lock may be left behind when
the state is prematurely canceled. To force an unlock in this situation use a command line such as the following:

idem exec esm.unlock provider=aws profile=<...> --acct-file=<...> --acct-key=<...>

28.4 context

The context feature allows only one instance of an Idem state run for a given context. It also exposes a state dictionary
that can be managed by an arbitrary plugin. The context is managed for you by Idem when you write an ESM plugin.
The following shows how context works and how to use it:

async def my_func(hub):
Retrieve the context manager
context_manager = hub.idem.managed.context(

run_name=hub.OPT.idem.run_name,
cache_dir=hub.OPT.idem.cache_dir,

(continues on next page)

90 Chapter 28. Enforced State Management

idem Documentation

(continued from previous page)

esm_plugin="my_esm_plugin",
esm_profile=hub.OPT.idem.esm_profile,
acct_file=hub.OPT.acct.acct_file,
acct_key=hub.OPT.acct.acct_key,
serial_plugin=hub.OPT.idem.serial_plugin,

)

Enter the context and lock the run.
This calls `hub.esm.my_esm_plugin.enter()` and `hub.esm.my_esm_plugin.get_state()`␣

→˓with the appropriate ctx
async with context_manager as state:

The output of get_state() is now contained in the "state" variable
Changes to `state` will persist when we exit the context and `hub.esm.my_esm_

→˓plugin.set_state()` is called with the appropriate ctx
state.update({})

After exiting the context, `hub.esm.my_esm_plugin.exit_() is called with the␣
→˓appropriate ctx

28.5 Writing an ESM plugin

An ESM plugin follows this basic format:

my_project_root/my_project/esm/my_plugin.py
from typing import Any
from typing import Dict

def __init__(hub):
hub.esm.my_plugin.ACCT = ["my_acct_provider"]

async def enter(hub, ctx):
"""
:param hub:
:param ctx: A namespace addressable dictionary that contains the `acct` credentials

"acct" contains the esm_profile from "my_acct_provider"

Enter the context of the enforced state manager
Only one instance of a state run will be running for the given context.
This function enters the context and locks the run.

The return of this function will be passed by Idem to the "handle" parameter of the␣
→˓exit function
"""

async def exit_(hub, ctx, handle, exception: Exception):
"""
:param hub:
:param ctx: A namespace addressable dictionary that contains the `acct` credentials

(continues on next page)

28.5. Writing an ESM plugin 91

idem Documentation

(continued from previous page)

"acct" contains the esm_profile from "my_acct_provider"
:param handle: The output of the corresponding "enter" function
:param exception: Any exception that was raised while inside the context manager or␣

→˓None

Exit the context of the Enforced State Manager
"""

async def get_state(hub, ctx) -> Dict[str, Any]:
"""
:param hub:
:param ctx: A dictionary with 3 keys:

"acct" contains the esm_profile from "my_acct_provider"

Use the information provided in ctx.acct to retrieve the enforced managed state.
Return it as a python dictionary.
"""

async def set_state(hub, ctx, state: Dict[str, Any]):
"""
:param hub:
:param ctx: A namespace addressable dictionary that contains the `acct` credentials

"acct" contains the esm_profile from "my_acct_provider"

Use the information provided in ctx.acct to upload/override the enforced managed␣
→˓state with "state".
"""

Extend the ESM dyne in your project for a plugin:

my_project_root/my_project/conf.py
DYNE = {"esm": ["esm"]}

28.6 refresh

Idem includes a refresh command that can bring resources from describe into the ESM context.

The refresh command:

$ idem refresh aws.ec2.*

Is functionally equivalent to these commands:

$ idem describe aws.ec2.* --output=yaml > ec2.sls
$ idem state ec2.sls --test
$ rm ec2.sls

An idem refresh only returns resource attribtues and should not make any changes to resources as long as the re-
sources implement the ctx.test flag properly in their present state.

92 Chapter 28. Enforced State Management

idem Documentation

28.7 restore

ESM keeps a cache of the local run state. The restore command calls an ESM plugin’s set_state method with the
contents of a json file.

$ idem restore esm_cache_file.json

The cache file is generated on every Idem state run and is based on Idem’s run_name and cache_dir:

$ idem state my_state --run-name=my_run_name --cache-dir=/var/cache/idem
Cache file for this run will be located in /var/cache/idem/my_run_name.json

28.7. restore 93

idem Documentation

94 Chapter 28. Enforced State Management

CHAPTER

TWENTYNINE

PROGRESS BAR

Idem can show a progress bar for states. The progress bar displays one tick mark for each state completed, regardless
of success or failure. Progress bars are printed to stderr and do not interfere with parsing program output. The default
behavior is to show the progress bar.

29.1 Configuration

The config file supports the following options for progress bars:

my_config.cfg

idem:
Always show a progress bar
progress: True
The progress plugin to use, currently only "tqdm" is available
progress_plugin: tqdm
kwargs to pass to the progress bar plugin "create" function
progress_options:
colour: green

29.2 CLI

The progress bar is enabled on the cli by default for the following cli commands:

$ idem state my_state.sls

$ idem describe my_resource

You can also explicitly disable the progress bar on the cli using the --no-progress flag.

$ idem state my_state.sls --no-progress

95

idem Documentation

29.3 Examples

To add a progress bar, create and call an SLS file such as progress.sls. Use the following examples as guidelines.

29.3.1 Basic progress bar

The following progress.sls file creates a simple progress bar:

progress.sls

{% for i in range(100) %}
sleep_{{ i }}:
time.sleep:
- duration: .1

{% endfor %}

To show the progress bar, add the following command line options. Use serial runtime to clearly display incremental
tick marks. Parallel runtime is instantaneous and won’t show a slow progression of tick marks:

$ idem state progress.sls --progress --runtime=serial

Progress bar output:

idem runtime: 0: 100%|¦¦¦¦¦¦¦¦¦¦| 100/100 [00:10<00:00, 9.63states/s]

29.3.2 Reconciliation

Idem reconciliation loops result in a progress bar for each loop as shown in the following example.

For demonstration purposes in the example, the first run is coded to fail in the nop state requisites. The failure then
causes three reconciliation passes, each with its own progress bar:

progress.sls

fail:
test.present:
- result: False

nop:
test.nop:
- require:

- fail

$ idem state progress.sls --progress --runtime=serial

Progress bar output:

idem runtime: 0: 100%|¦¦¦¦¦¦¦¦¦¦| 2/2 [00:00<00:00, 959.79states/s]
idem runtime: 1: 100%|¦¦¦¦¦¦¦¦¦¦| 1/1 [00:00<00:00, 266.02states/s]
idem runtime: 2: 100%|¦¦¦¦¦¦¦¦¦¦| 1/1 [00:00<00:00, 264.14states/s]
idem runtime: 3: 100%|¦¦¦¦¦¦¦¦¦¦| 1/1 [00:00<00:00, 274.86states/s]

96 Chapter 29. Progress Bar

idem Documentation

29.3.3 Displaying separate progress bars

The unique requisite creates a new runtime for each use of the unique requisite, which results in a new progress bar
for each state.

progress.sls

{% for i in range(10) %}
sleep_{{ i }}:
time.sleep:
- duration: .1
- unique:

- time.sleep
{% endfor %}

$ idem state progress.sls --progress --runtime=serial

Progress bar output:

idem runtime: 0: 10%|¦ | 1/10 [00:00<00:00, 9.80states/s]
idem runtime: 0: 10%|¦ | 1/10 [00:00<00:00, 9.46states/s]

idem runtime: 1: 11%|¦ | 1/9 [00:00<00:00, 9.56states/s]
idem runtime: 1: 11%|¦ | 1/9 [00:00<00:00, 9.23states/s]
idem runtime: 2: 12%|¦? | 1/8 [00:00<00:00, 9.65states/s]
idem runtime: 2: 12%|¦? | 1/8 [00:00<00:00, 9.33states/s]

idem runtime: 3: 14%|¦? | 1/7 [00:00<00:00, 9.66states/s]
idem runtime: 3: 14%|¦? | 1/7 [00:00<00:00, 9.32states/s]
idem runtime: 4: 17%|¦? | 1/6 [00:00<00:00, 9.65states/s]
idem runtime: 4: 17%|¦? | 1/6 [00:00<00:00, 9.43states/s]

idem runtime: 5: 20%|¦¦ | 1/5 [00:00<00:00, 9.70states/s]
idem runtime: 5: 20%|¦¦ | 1/5 [00:00<00:00, 9.39states/s]
idem runtime: 6: 25%|¦¦¦ | 1/4 [00:00<00:00, 9.63states/s]
idem runtime: 6: 25%|¦¦¦ | 1/4 [00:00<00:00, 9.29states/s]

idem runtime: 7: 33%|¦¦¦? | 1/3 [00:00<00:00, 9.66states/s]
idem runtime: 7: 33%|¦¦¦? | 1/3 [00:00<00:00, 9.35states/s]
idem runtime: 8: 50%|¦¦¦¦¦ | 1/2 [00:00<00:00, 9.65states/s]
idem runtime: 8: 50%|¦¦¦¦¦ | 1/2 [00:00<00:00, 9.35states/s]

idem runtime: 9: 100%|¦¦¦¦¦¦¦¦¦¦| 1/1 [00:00<00:00, 9.63states/s]
idem runtime: 9: 100%|¦¦¦¦¦¦¦¦¦¦| 1/1 [00:00<00:00, 9.40states/s]

29.3. Examples 97

idem Documentation

29.4 Progress bars in PyCharm

Some terminal consoles, such as the PyCharm “Run” window, do not flush or erase a line of text.

To correctly display progress bars in PyCharm, edit your Run configuration, and enable the “emulate terminal in output
console” option.

98 Chapter 29. Progress Bar

CHAPTER

THIRTY

COUNT

Count allows you to create n number of instances of the same resource.

To create identical states, use names for state replication. The following example shows how to create four internet
gateway resources that start with igw- in the name.

SLS

igw-12345:
aws.ec2.internet_gateway.present:
- names:{% for i in range(4) %}

Test {{ loop.index }}: {{loop.index}}
{% endfor %}

- tags:
- Key: new-name
Value: igw-9cd387e7

Result

ID: igw-12345
Function: aws.ec2.internet_gateway.present
Result: True

Comment: Created 'igw-b440d01c'
Changes: new:

Attachments:
InternetGatewayId:

igw-b440d01c
OwnerId:

000000000000
Tags:

_
Key:

new-name
Value:

igw-9cd387e7

ID: igw-12345
Function: aws.ec2.internet_gateway.present
Result: True

Comment: Created 'igw-bc2861d1'
(continues on next page)

99

idem Documentation

(continued from previous page)

Changes: new:

Attachments:
InternetGatewayId:

igw-bc2861d1
OwnerId:

000000000000
Tags:

_
Key:

new-name
Value:

igw-9cd387e7

ID: igw-12345
Function: aws.ec2.internet_gateway.present
Result: True

Comment: Created 'igw-7bf9255d'
Changes: new:

Attachments:
InternetGatewayId:

igw-7bf9255d
OwnerId:

000000000000
Tags:

_
Key:

new-name
Value:

igw-9cd387e7

ID: igw-12345
Function: aws.ec2.internet_gateway.present
Result: True

Comment: Created 'igw-3aba95d8'
Changes: new:

Attachments:
InternetGatewayId:

igw-3aba95d8
OwnerId:

000000000000
Tags:

_
Key:

new-name
Value:

igw-9cd387e7

100 Chapter 30. Count

idem Documentation

To create states with different properties, use a jinja template in a loop. The following example shows how to create
three subnets, where each subnet belongs to a different availability zone:

SLS

{% set aws_availability_zones = {"available": { "names": ["us-east-2a", "us-west-2b",
→˓"eu-west-3"]}}%}
{% set VpcSuperNet = "10.0."%}
{% for i in range(3) %}
aws_subnet.cluster-{{i}}:
aws.ec2.subnet.present:
- availability_zone: {{aws_availability_zones.available.names[i]}}
- vpc_id: vpc-3d44da2d
- cidr_block: {{VpcSuperNet+(i | string)}}.0/18
- tags: {{ [{"Key":"Name", "Value":"test-"+(i | string)}] }}

{% endfor %}

Result

ID: aws_subnet.cluster-0
Function: aws.ec2.subnet.present
Result: True

Comment: Created 'aws_subnet.cluster-0'
Changes: new:

name:

aws_subnet.cluster-0
resource_id:

subnet-d7cd43a1
vpc_id:

vpc-3d44da2d
cidr_block:

10.0.0.0/18
availability_zone:

us-west-2a
tags:

_
Key:

Name
Value:

test-0

ID: aws_subnet.cluster-1
Function: aws.ec2.subnet.present
Result: True

Comment: Created 'aws_subnet.cluster-1'
Changes: new:

name:

aws_subnet.cluster-1
resource_id:

subnet-ad763648
vpc_id:

(continues on next page)

101

idem Documentation

(continued from previous page)

vpc-3d44da2d
cidr_block:

10.0.1.0/18
availability_zone:

us-west-2b
tags:

_
Key:

Name
Value:

test-0

ID: aws_subnet.cluster-2
Function: aws.ec2.subnet.present
Result: True

Comment: Created 'aws_subnet.cluster-2'
Changes: new:

name:

aws_subnet.cluster-2
resource_id:

subnet-bc438686
vpc_id:

vpc-3d44da2d
cidr_block:

10.0.2.0/18
availability_zone:

us-west-2c
tags:

_
Key:

Name
Value:

test-0

102 Chapter 30. Count

CHAPTER

THIRTYONE

EVENTS

Every event follows a predictable format:

{
"tags": {

"ref": "A reference to the function on the hub that fired this event",
"type": "An identifier to describe the nature of the message"

},
"message": "Message data, which can be any serializable object",
"run_name": "The user-given run_name"

}

31.1 Firing Events

31.1.1 from code

The body is any serializable data that comprises the main part of the event The profile is the ingress profile from
acct that this event should be published to.

Asynchronous put:

async def my_func(hub):
await hub.idem.event.put(

body="Any serializable object",
profile="idem-[plugin]",
tags={},

)

Synchronous put:

def my_func(hub):
hub.idem.event.put_nowait(

body="Any serializable object",
profile="idem-[plugin]",
tags={},

)

103

idem Documentation

31.1.2 from jinja/sls

Events can also be fired from within an idem sls file via jinja:

{%- hub.idem.event.put_nowait(body={"message": "event content"}, profile="default", tags=
→˓{}) %}

31.2 Event Profiles

Events in idem are published to profiles of a specific name. Create an event profile associated with specific events to
subscribe to that event with your chosen provider. Multiple providers can be configured for the same event profile.

kafka:
event_profile_name:
connection:
bootstrap_servers: localhost:9092

pika:
event_profile_name:
connection:
host: localhost
port: 5672
login: guest
password: guest

A profile name can be specified multiple times within the same provider.

kafka:
- event_profile_name:

connection:
bootstrap_servers: localhost:9092

- event_profile_name:
connection:
bootstrap_servers: my_server:9092

31.2.1 idem-*

Create a profile called idem-* to receive ALL events from idem.

my_provider:
idem-*:
provider_connection_data:

The default plugin for this matching is glob. A different acct_file wide match_plugin can be specified by adding a
match_plugin keyword to your acct_file. Read more about match plugins in pop-evbus.

match_plugin: glob|regex
my_provider:
idem-*:
provider_connection_data:

104 Chapter 31. Events

https://gitlab.com/vmware/idem/evbus/-/blob/master/docs/releases/5.0.0.rst

idem Documentation

31.2.2 idem-status

Create an evbus provider profile called idem-status to receive events about the status of the current run.

my_provider:
idem-status:
provider_connection_data:

Message body format for status data:

{
"tags": {"ref": "idem.state.update_status", "type": "state-status"},
"message": "FINISHED/CREATED/GATHERING/COMPILING/RUNNING/COMPILATION_ERROR/GATHER_

→˓ERROR/RUNTIME_ERROR/UNDEFINED",
"run_name": "The user supplied run-name"

}

31.2.3 idem-low

Create an evbus provider profile called idem-low to receive events about sls low data.

my_provider:
idem-low:
provider_connection_data:

Message body format for low data:

{
"tags": {"ref": "idem.run.init.start", "type": "state-low-data"},
"message": [

{
"name": "Name of the state",
"state": "Reference on the hub to state plugin",
"fun": "The state function name",
"__sls__": "The sls source",
"__id__": "The state id, usually it will be the same as name",
"order": 100000

}
],
"run_name": "The user supplied run-name"

}

31.2.4 idem-high

Create an evbus provider profile called idem-high to receive events about sls rendered high data.

my_provider:
idem-high:
provider_connection_data:

Message body format for high data:

31.2. Event Profiles 105

idem Documentation

{
"message": {

"Reference on the hub to the state plugin": {
"__sls__": "The stem/name of the sls source",
"The reference to the state plugin": ["The reference to the state function"]

}
},
"run_name": "The user supplied run-name",
"tags": {"ref": "idem.sls_source.init.gather", "type": "state-high-data"}

}

31.2.5 idem-state

Create an evbus provider profile called idem-state to receive the pre/post state information.

my_provider:
idem-state:
provider_connection_data:

pre

Message body format for run data:

{
"message": {

"Name of the state": {
"The reference to the state function": {

"ctx": {"run_name": "The run_name specified on the cli", "test": false},
"kwargs": {},
"name": "Name of the state"

}
}

},
"run_name": "The user supplied run-name",
"tags": {

"ref": "Reference on the hub to the state function that fired the event",
"type": "state-pre",
"acct_details": "Information that can link this event to acct credentials in the␣

→˓calling function"
}

}

106 Chapter 31. Events

idem Documentation

post

Message body format for run data:

{
"message": {

"changes": {"old": [], "new": []},
"comment": "",
"name": "Name of the state",
"result": true

},
"run_name": "The user supplied run-name",
"tags": {"ref": "Reference on the hub to the state function that fired the event

→˓", "type": "state-post",
"acct_details": "Information that can link this event to acct credentials in the␣

→˓calling function"
}

}

31.2.6 idem-chunk

Create an evbus provider profile called idem-chunk to receive individual fully compiled states.

my_provider:
idem-chunk:
provider_connection_data:

Message body format for run data:

{
"message": {

"name": "Name of the state",
"state": "Reference on the hub to the state plugin",
"fun": "Reference on the hub to the state function",
"__id__": "The state id, usually same as name",
"__sls__": "Tye sls source",
"order": 100000

},
"run_name": "The user supplied run-name",
"tags": {"ref": "Reference on the hub to the state function that fired the event

→˓", "type": "state-post"
}

}

31.2. Event Profiles 107

idem Documentation

31.2.7 idem-run

Create an evbus provider profile called idem-run to receive the output of each state with complete meta-data

my_provider:
idem-run:
provider_connection_data:

Message body format for run data:

{
"message": {

"name": "Name of the state",
"__id__": "The state id",
"order": "An integer that helps idem determine which states to run first",
"__run_num": "The run number of the state",
"changes": "A dictionary of changes made in the state",
"comment": "A comment supplied by the state",
"esm_tag": "The key used to store this state in the ESM cache",
"tag": "The key used to store this state in the RUNS internal structure",
"new_state": "The state of a resource after a run",
"old_state": "The state of a resource before a run",
"result": "True if the state ran successfully, else False"

},
"run_name": "The user supplied run-name",
"tags": {"ref": "idem.rules.init.run", "type": "state-result",
"acct_details": "Information that can link this event to acct credentials in the␣

→˓calling function"
}
}

31.2.8 idem-exec

Create an evbus provider profile called idem-exec to receive the returns of all idem exec modules as events.

my_provider:
idem-exec:
provider_connection_data:

Message body format for exec data:

{
"message": {"result": true, "ret": "Any object", "comment": "Any string"},
"run_name": "The user supplied run-name",
"tags": {

"type": "exec-post",
"ref": "A reference to the function on the hub that fired this event",
"acct_details": "Information that can link this event to acct credentials in␣

→˓the calling function"
}

}

108 Chapter 31. Events

idem Documentation

31.2.9 logger

Create an evbus profile called idem-logger to receive all log messages from pop as events.

my_provider:
idem-logger:
provider_connection_data:

When starting idem from the command line, be sure to specify --log-handler=event.

idem state state.sls --log-level=debug --log-handler=event

Message body format for logs:

{
"message": "The log message",
"run_name": "The user supplied run-name",
"tags": {

"module": "module that produced the log",
"level": "log level name",
"timestamp": "asctime timestamp",
"ref": "A reference to the function on the hub that fired this event"

}
}

31.2. Event Profiles 109

idem Documentation

110 Chapter 31. Events

CHAPTER

THIRTYTWO

KUBERNETES CRD SUPPORT

Idem supports using Kubernetes CRD to execute state. The kubernetes CRD is internally converted into SLS format
used by idem.

32.1 CRD format

The CRD format is similar to kubernetes syntax. Following is a sample CRD SLS file:

apiVersion: resource-management.azure.idem.vmware.com/v1alpha1
kind: resource-groups
metadata:
name: new-rg

spec:
- resource_group_name: new-rg
- parameters:

location: eastus
tags:
env: new-rg
Unit: CMBU

The above CRD gets converted internally into the following SLS:

new-rg:
azure.resource_management.resource_groups.present:
- resource_group_name: new-rg
- parameters:
location: eastus
tags:
env: new-rg
Unit: CMBU

As clear from the above example:

1. apiVersion together with kind attribute identifies the path reference of the SLS.

2. metadata’s name is the state id of the SLS.

3. spec contains any parameters required by the resulting state.

4. function reference is always present by default, but can be inverted using command-line parameter --invert.

111

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

idem Documentation

32.2 Execution

To execute a Kubernetes CRD, command-line parameter --render 'jinja|yaml|k8crd' needs to be specified.

Following example details a resource group creation using CRD as mentioned in previous section:

$ idem state --output json --render 'jinja|yaml|k8crd' crd.sls
{

"azure.resource_management.resource_groups_|-new-rg_|-new-rg_|-present": {
"changes": {

"new": {
"id": "/subscriptions/subscription-id/resourceGroups/new-rg",
"name": "new-rg",
"type": "Microsoft.Resources/resourceGroups",
"location": "eastus",
"tags": {

"env": "new-rg",
"Unit": "CMBU"

},
"properties": {

"provisioningState": "Succeeded"
}

}
},
"comment": "Created",
"name": "new-rg",
"result": true,
"old_state": null,
"new_state": null,
"__run_num": 1

}
}

Following example details resouce group deletion using the same CRD:

$ idem state --output json --render 'jinja|yaml|k8crd' --invert crd.sls
{

"azure.resource_management.resource_groups_|-new-rg_|-new-rg_|-absent": {
"changes": {

"old": {
"id": "/subscriptions/subscription-id/resourceGroups/new-rg",
"name": "new-rg",
"type": "Microsoft.Resources/resourceGroups",
"location": "eastus",
"tags": {

"env": "new-rg",
"Unit": "CMBU"

},
"properties": {

"provisioningState": "Succeeded"
}

}
},

(continues on next page)

112 Chapter 32. Kubernetes CRD support

idem Documentation

(continued from previous page)

"comment": "Accepted",
"name": "new-rg",
"result": true,
"old_state": null,
"new_state": null,
"__run_num": 1

}
}

32.2. Execution 113

idem Documentation

114 Chapter 32. Kubernetes CRD support

CHAPTER

THIRTYTHREE

IDEM SCRIPTS

Idem runs can be initialized from a python script. If at all possible, it is ideal to use idem’s CLI. However, in some
FAAS applications shelling out isn’t always an option; for example aws lambdas must use pure python. The following
examples show how to run idem from a pure python script.

In this example, states are run with the minimum configuration:

import pop.hub
import json

Create the hub
hub = pop.hub.Hub()
Add idem's dynamic namespace to the hub, which loads all idem-related subs onto the hub
I.E. states/exec/tool/acct/etc...
All python projects in the current python environment that have a conf.py with a DYNE␣
→˓dictionary will be loaded
They will be loaded onto subs based on the mappings in the DYNE dictionary
hub.pop.sub.add(dyne_name="idem")

Set up variables to use in the run
run_name = "my_run"
sls_name = "my_sls"
test = False
invert_state = False
acct_profile = "default"
cache_dir = "/dev/null"
runtime = "parallel"
params = []
param_sources = []
esm_plugin = "local"
esm_profile = "default"

Compile states as a dictionary
my_states = {

f"{sls_name}.sls": {
"state_name": {

"test.nop": [
{"name": "value"},
{"kwarg1": "value1"},

]
}

}
(continues on next page)

115

idem Documentation

(continued from previous page)

}

Compile acct data that will be used for the run
acct_data = {

"profiles": {
"provider_name": {

"profile_name": {
"kwarg_1": "value_1",
"kwarg_2": "value_2",

},
"default": {

"kwarg_1": "value_1",
"kwarg_2": "value_2",

},
}

}
}

Create the event loop
hub.pop.loop.create()
Run the states
hub.pop.Loop.run_until_complete(

hub.idem.state.apply(
name=run_name,
sls_sources=[f"json://{json.dumps(my_states)}"],
render="json",
runtime=runtime,
subs=["states"],
cache_dir=cache_dir,
sls=[sls_name],
test=test,
invert_state=invert_state,
acct_profile=acct_profile,
acct_data=acct_data,
managed_state={},
param_sources=param_sources,
params=params,

)
)

Gather the results from RUNS
results = hub.idem.RUNS[run_name]["running"]
errors = hub.idem.RUNS[run_name]["errors"]

Do things with the resulting data
print(f"State compile errors: {errors}")
print(f"State run results: {results}")

This example runs states in an esm context:

import pop.hub
import json

(continues on next page)

116 Chapter 33. Idem scripts

idem Documentation

(continued from previous page)

Create the hub
hub = pop.hub.Hub()
Add idem's dynamic namespace to the hub, which loads all idem-related subs onto the hub
I.E. states/exec/tool/acct/etc...
All python projects in the current python environment that have a conf.py with a DYNE␣
→˓dictionary will be loaded
They will be loaded onto subs based on the mappings in the DYNE dictionary
hub.pop.sub.add(dyne_name="idem")

Set up variables to use in the run
run_name = "my_run"
sls_name = "my_sls"
test = False
invert_state = False
acct_profile = "default"
cache_dir = "/dev/null"
runtime = "parallel"
params = []
param_sources = []
esm_plugin = "local"
esm_profile = "default"

Compile states as a dictionary
my_states = {

f"{sls_name}.sls": {
"state_name": {

"test.nop": [
{"name": "value"},
{"kwarg1": "value1"},

]
}

}
}

Compile acct data that will be used for the run
acct_data = {

"profiles": {
"provider_name": {

"profile_name": {
"kwarg_1": "value_1",
"kwarg_2": "value_2",

},
"default": {

"kwarg_1": "value_1",
"kwarg_2": "value_2",

},
}

}
}

(continues on next page)

117

idem Documentation

(continued from previous page)

async def start():
Configure the context for ESM
context_manager = hub.idem.managed.context(

run_name=run_name,
cache_dir=cache_dir,
esm_plugin=esm_plugin,
esm_profile=esm_profile,
acct_data=acct_data,

)
Run the states in the ESM context
async with context_manager as state:

await hub.idem.state.apply(
name=run_name,
sls_sources=[f"json://{json.dumps(my_states)}"],
render="json",
runtime=runtime,
subs=["states"],
cache_dir=cache_dir,
sls=[sls_name],
test=test,
invert_state=invert_state,
acct_profile=acct_profile,
acct_data=acct_data,
managed_state=state,
param_sources=param_sources,
params=params,

)

Create the event loop
hub.pop.loop.create()
Run idem in the event loop
hub.pop.Loop.run_until_complete(start)

Gather the results from RUNS
results = hub.idem.RUNS[run_name]["running"]
errors = hub.idem.RUNS[run_name]["errors"]

Do things with the resulting data
print(f"State compile errors: {errors}")
print(f"State run results: {results}")

This example runs an exec module with the minimum configuration required:

import pop.hub
import json

Create the hub
hub = pop.hub.Hub()
Add idem's dynamic namespace to the hub, which loads all idem-related subs onto the hub
I.E. states/exec/tool/acct/etc...
All python projects in the current python environment that have a conf.py with a DYNE␣

(continues on next page)

118 Chapter 33. Idem scripts

idem Documentation

(continued from previous page)

→˓dictionary will be loaded
They will be loaded onto subs based on the mappings in the DYNE dictionary
hub.pop.sub.add(dyne_name="idem")

Use the run_name as a routing key for exec module events
hub.idem.RUN_NAME = run_name = "my_run"

Compile acct data that will be used for the run
acct_profile = "default"
acct_data = {

"profiles": {
"provider_name": {

"profile_name": {
"kwarg_1": "value_1",
"kwarg_2": "value_2",

},
"default": {

"kwarg_1": "value_1",
"kwarg_2": "value_2",

},
}

}
}

positional arguments for the exec module go here.
args = []
Keyword arguments for teh exec module go here
kwargs = {}

NOTE: hub and ctx should not be passed to the exec module.
The hub is implicitly passed and ctx is constructed from acct_data

hub.pop.loop.create()
Run the exec module in the loop
result = hub.pop.Loop.run_until_complete(

hub.idem.ex.run(
"test.ping",
args=args,
kwargs=kwargs,
acct_data=acct_data,
acct_profile=acct_profile,

)
)

Do things with the result
print(result.result)
print(result.comment)
print(result.ret)

119

idem Documentation

120 Chapter 33. Idem scripts

CHAPTER

THIRTYFOUR

IDEM DESCRIBE

The idem describe command lists the resources in a cloud account.

The idem describe command supports state file paths and regular expressions as input. In addition, you can refine
output by applying a filter.

34.1 State file path as input

The following command returns all AWS S3 buckets in the provided cloud account.

idem describe aws.s3.bucket

34.2 Regular expression as input

Any valid regular expression can be used as an input. The following command returns all AWS resources in the provided
cloud account.

idem describe "aws.*"

The following command returns all dynamodb and S3 resources in the provided cloud account.

idem describe "aws\.(dynamodb|s3)\..*"

34.3 Filtering

To further refine output, you can also add the --filter argument.

The following command only returns automatically named S3 buckets that start with the word production.

idem describe aws.s3.bucket --filter="[?resource[?bucket_prefix=='production']]"

121

idem Documentation

122 Chapter 34. Idem describe

CHAPTER

THIRTYFIVE

TUTORIALS

35.1 Write To File Function

Idem supports writing any data to a file. The ‘parameters’ might include argument bindings to record details from
resources referenced by the same Idem invocation. The function can accept a Jinja template or a template file, which
can generate a script from the ‘parameters’. If you omit a template, and the ‘parameters’ are a dictionary, they will be
written to the file in a json format.

For example:

my-output-file:
data.write:
- file_name: "/files/audit.log"
- template: '{% raw %}

{% for resource_name, resource_id in parameters.items() %}
Created {{ resource_name }} {{ resource_id }}

{% endfor %}
{% endraw %}'

- parameters:
${resource-1:name}: ${resource-1:id}
${resource-2:name}: ${resource-2:id}

The preceding write function produces a /files/audit.log text file that contains the following:

Created subnet-1 a7dd1f64-8e02-11ec-b909-0242ac120002
Created subnet-2 b08bcf20-8e02-11ec-b909-0242ac120002

35.2 Template Render Function

Idem supports rendering data from jinja template file or an embedded jinja template. The ‘variables’ includes key-value
pairs which will be used for interpolation within the template. The function can accept a Jinja template or a template
file.

For example:

my-rendered-data:
template.render:
- template: '{% raw %}Hello {{ name }} !!{% endraw %}'
- variables:

name: "World"

123

idem Documentation

The preceding render function produces the below content:

Hello World !!

35.3 Sleep Function

The idem time.sleep function pauses idem execution before or after resource state enforcement. Use require to pause
before enforcement or require_in to pause after enforcement. Set the duration argument to the desired pause time
in seconds.

The following example delays enforcement of the some_machine resource:

sleep_60s:
time.sleep:
- duration: 60

some_machine:
cloud.instance.present:
- name: my-instance
- require:
- time.sleep: sleep_60s

The following example adds a delay after the some_machine resource is enforced:

sleep_60s:
time.sleep:
- duration: 60

some_machine:
cloud.instance.present:
- name: my-instance
- require_in:

- time.sleep: sleep_60s

35.4 Trigger State in Idem

Trigger state lets Idem define a dictionary of key-value(K-V) pairs. Keys are user-defined and Values can be output of
any other state or any other value a user wishes to define.

Behaviour of Trigger state : - check the value in the old_state dictionary and compare with the current_state. - if there
is difference between old_state and new_state , result[changes] is populated with the diff.

Trigger state can be seen as a helper state. It can be used in conjunction with other state.

124 Chapter 35. Tutorials

idem Documentation

35.4.1 Example

``
always-changes-and-succeeds:

test.succeed_with_changes:
- name: foo

always-changes-trigger:
trigger.build:

- triggers:
- last_run_id: {{ range(1, 51) | random }}
- comment: ${test:always-changes-and-succeeds:testing}

watch_changes:
test.nop:
- onchanges:
- trigger: always-changes-trigger

``

In the above example , always-changes-trigger is a trigger state with a dictionary of K-V pairs. watch_changes is
watching for changes of always-changes-trigger. Iff there are changes in the trigger state , state watch_changes will
execute.

35.4. Trigger State in Idem 125

idem Documentation

126 Chapter 35. Tutorials

CHAPTER

THIRTYSIX

SINGLE TARGET

target CLI option allow you to specify a single state. The resource will be executed with all its dependencies. The
target value is the declaration ID of the state, which is guaranteed to be unique. If there are multiple states under a
single declaration ID all of them will be invoked.

idem state <SLS> –target=<the_target>

Specifying an invalid target will result in an error.

For example, for the following SLS:

resource_a:

type1.present:

• require: - resource_b

resource_b:

type2.present:

• name: the_name_of_resource_b

• require: - resource_c

resource_c:
type3.present

grouped_resource_d:

typeA.present:

• require: - resource_c

typeB.present:

• name: typeB_resource

typeC.present:

• name: typeC_resource

idem state SLS –target=resource_a

will result in resource_a, resource_b and resource_c.

idem state SLS –target=grouped_resource_d

will result in the 3 nested resources (typeA, typeB and typeC) and resource_c.

127

idem Documentation

128 Chapter 36. Single Target

CHAPTER

THIRTYSEVEN

TUTORIALS

37.1 Example Tutorial

A friendly message about why idem is useful for this walkthrough.

129

idem Documentation

130 Chapter 37. Tutorials

CHAPTER

THIRTYEIGHT

MICROSOFT AZURE CLOUD PROVIDER

Setting up cloud resources using Idem is easy to do! Check out the documentation at the link below:

Azure for Idem (idem-azurerm) Documentation

131

https://idem-azurerm.readthedocs.io/en/latest/

idem Documentation

132 Chapter 38. Microsoft Azure Cloud Provider

CHAPTER

THIRTYNINE

MIGRATING SUPPORT FROM SALT

Idem is not too far from Salt States. Idem extends Salt State functionality though, and uses slightly different underlying
interfaces. for instance, Idem does not use __salt__ or any of the dunder constructs, all of this information is now on
the hub. But migration is intended to be easy!

39.1 Exec Modules and State Modules

Idem follows the same constructs as Salt in seperating execution functionality from idempotent enforcement into two
seperate subsystems. The idea is that these are seperate concerns and that raw execution presents value in itself making
the code more reusable.

39.1.1 salt/modules to exec

Modules inside of salt/modules should be implemented as exec modules in Idem. References on the hub should be
changed from __salt__[‘test.ping’] to references on the hub, like hub.exec.test.ping.

39.1.2 salt/states to states

Modules inside of salt/states should be implemented as states modules in Idem. References on the hub should be
changed from __states__[‘pkg.installed’] to hub.states.pkg.installed.

39.1.3 salt/utils to exec

Many Salt modules use functions inside of utils. This grew in Salt out of limitations from the salt loader and how
shared code was originally developed.

For Idem anything that is in utils should be moved into exec. This makes those functions generally available for
everything else on the hub which solves the problem that created the utils system in Salt to begin with.

133

idem Documentation

39.2 Namespaces

Unlike Salt’s loader, POP allows for nested plugin subsystems. Idem recursively loads all lower subsystems for exec
and states subsystems.

This means that you can move exec and states plugins into subdirectories! So when porting a module
called salt/modules/boto_s3.py it could be ported to exec/boto/s3.py, or it could be ported to exec/aws/s3.py or
exec/aws/storage/s3.py. The location of the file reflects the location on the hub, so these locations get referenced
on the hub as hub.exec.boto.s3, hub.exec.aws.s3, hub.exec.aws.storage.s3 respectively.

39.3 Exec Function Calls

All function calls now need to accept the hub as the first argument. Functions should also be changed to be async
functions where appropriate. So this exec function signature:

def upload_file(
source,
name,
extra_args=None,
region=None,
key=None,
keyid=None,
profile=None,
):

Gets changed to look like this:

async def upload_file(
hub,
source,
name,
extra_args=None,
region=None,
key=None,
keyid=None,
profile=None,
):

39.4 States Function Calls

States function calls now accept a ctx argument. This allows us to send an execution context into the function. The
ctx is a dict with the keys test and run_name. The test value is a boolean telling the state if it is running is test mode.
The run_name is the name of the run as it is stored on the hub, using the run_name you can gain access to the internal
tracking data for the execution of the Idem run located in hub.idem.RUNS[ctx[‘run_name’]].

So a state function signature that looks like this in Salt:

def object_present(
name,
source=None,

(continues on next page)

134 Chapter 39. Migrating Support From Salt

idem Documentation

(continued from previous page)

hash_type=None,
extra_args=None,
extra_args_from_pillar='boto_s3_object_extra_args',
region=None,
key=None,
keyid=None,
profile=None):

Will look like this in Idem:

async def object_present(
hub,
ctx,
name,
source=None,
hash_type=None,
extra_args=None,
extra_args_from_pillar='boto_s3_object_extra_args',
region=None,
key=None,
keyid=None,
profile=None):

39.5 Full Function Example

This example takes everything into account given a state function before and after. Doc strings are omitted for brevity
but should be preserved.

39.5.1 Salt Function

def object_present(
name,
source=None,
hash_type=None,
extra_args=None,
extra_args_from_pillar='boto_s3_object_extra_args',
region=None,
key=None,
keyid=None,
profile=None,

):
ret = {

'name': name,
'comment': '',
'changes': {},

}

if extra_args is None:
extra_args = {}

(continues on next page)

39.5. Full Function Example 135

idem Documentation

(continued from previous page)

combined_extra_args = copy.deepcopy(
__salt__['config.option'](extra_args_from_pillar, {})

)
__utils__['dictupdate.update'](combined_extra_args, extra_args)
if combined_extra_args:

supported_args = STORED_EXTRA_ARGS | UPLOAD_ONLY_EXTRA_ARGS
combined_extra_args_keys = frozenset(six.iterkeys(combined_extra_args))
extra_keys = combined_extra_args_keys - supported_args
if extra_keys:

msg = 'extra_args keys {0} are not supported'.format(extra_keys)
return {'error': msg}

Get the hash of the local file
if not hash_type:

hash_type = __opts__['hash_type']
try:

digest = salt.utils.hashutils.get_hash(source, form=hash_type)
except IOError as e:

ret['result'] = False
ret['comment'] = "Could not read local file {0}: {1}".format(

source,
e,

)
return ret

except ValueError as e:
Invalid hash type exception from get_hash
ret['result'] = False
ret['comment'] = 'Could not hash local file {0}: {1}'.format(

source,
e,

)
return ret

HASH_METADATA_KEY = 'salt_managed_content_hash'
combined_extra_args.setdefault('Metadata', {})
if HASH_METADATA_KEY in combined_extra_args['Metadata']:

Be lenient, silently allow hash metadata key if digest value matches
if combined_extra_args['Metadata'][HASH_METADATA_KEY] != digest:

ret['result'] = False
ret['comment'] = (

'Salt uses the {0} metadata key internally,'
'do not pass it to the boto_s3.object_present state.'

).format(HASH_METADATA_KEY)
return ret

combined_extra_args['Metadata'][HASH_METADATA_KEY] = digest
Remove upload-only keys from full set of extra_args
to create desired dict for comparisons
desired_metadata = dict(

(k, v) for k, v in six.iteritems(combined_extra_args)
if k not in UPLOAD_ONLY_EXTRA_ARGS

)

(continues on next page)

136 Chapter 39. Migrating Support From Salt

idem Documentation

(continued from previous page)

Some args (SSE-C, RequestPayer) must also be passed to get_metadata
metadata_extra_args = dict(

(k, v) for k, v in six.iteritems(combined_extra_args)
if k in GET_METADATA_EXTRA_ARGS

)
r = __salt__['boto_s3.get_object_metadata'](

name,
extra_args=metadata_extra_args,
region=region,
key=key,
keyid=keyid,
profile=profile,

)
if 'error' in r:

ret['result'] = False
ret['comment'] = 'Failed to check if S3 object exists: {0}.'.format(

r['error'],
)
return ret

if r['result']:
Check if content and metadata match
A hash of the content is injected into the metadata,
so we can combine both checks into one
Only check metadata keys specified by the user,
ignore other fields that have been set
s3_metadata = dict(

(k, r['result'][k]) for k in STORED_EXTRA_ARGS
if k in desired_metadata and k in r['result']

)
if s3_metadata == desired_metadata:

ret['result'] = True
ret['comment'] = 'S3 object {0} is present.'.format(name)
return ret

action = 'update'
else:

s3_metadata = None
action = 'create'

def _yaml_safe_dump(attrs):
'''
Safely dump YAML using a readable flow style
'''
dumper_name = 'IndentedSafeOrderedDumper'
dumper = __utils__['yaml.get_dumper'](dumper_name)
return __utils__['yaml.dump'](

attrs,
default_flow_style=False,
Dumper=dumper)

changes_diff = ''.join(difflib.unified_diff(
_yaml_safe_dump(s3_metadata).splitlines(True),

(continues on next page)

39.5. Full Function Example 137

idem Documentation

(continued from previous page)

_yaml_safe_dump(desired_metadata).splitlines(True),
))

if __opts__['test']:
ret['result'] = None
ret['comment'] = 'S3 object {0} set to be {1}d.'.format(name, action)
ret['comment'] += '\nChanges:\n{0}'.format(changes_diff)
ret['changes'] = {'diff': changes_diff}
return ret

r = __salt__['boto_s3.upload_file'](
source,
name,
extra_args=combined_extra_args,
region=region,
key=key,
keyid=keyid,
profile=profile,

)

if 'error' in r:
ret['result'] = False
ret['comment'] = 'Failed to {0} S3 object: {1}.'.format(

action,
r['error'],

)
return ret

ret['result'] = True
ret['comment'] = 'S3 object {0} {1}d.'.format(name, action)
ret['comment'] += '\nChanges:\n{0}'.format(changes_diff)
ret['changes'] = {'diff': changes_diff}
return ret

39.5.2 Idem State Function

async def object_present(
hub,
ctx,
name,
source=None,
hash_type=None,
extra_args=None,
region=None,
key=None,
keyid=None,
profile=None):
ret = {

'name': name,
'comment': '',

(continues on next page)

138 Chapter 39. Migrating Support From Salt

idem Documentation

(continued from previous page)

'changes': {},
}

if extra_args is None:
extra_args = {}

Pull out args for pillar

Get the hash of the local file
if not hash_type:

hash_type = hub.OPT['idem']['hash_type'] # Pull opts from hub.OPT
try:

Some functions from utils will need to be ported over. Some general
Use functions should be sent upstream to be included in Idem.
digest = hub.exec.utils.hashutils.get_hash(source, form=hash_type)

except IOError as e:
ret['result'] = False
Idem requires Python 3.6 and higher, use f-strings
ret['comment'] = f'Could not read local file {source}: {e}'
return ret

except ValueError as e:
Invalid hash type exception from get_hash
ret['result'] = False
ret['comment'] = f'Could not hash local file {source}: {e}'
return ret

HASH_METADATA_KEY = 'idem_managed_content_hash' # Change salt refs to idem
combined_extra_args.setdefault('Metadata', {})
if HASH_METADATA_KEY in combined_extra_args['Metadata']:

Be lenient, silently allow hash metadata key if digest value matches
if combined_extra_args['Metadata'][HASH_METADATA_KEY] != digest:

ret['result'] = False
ret['comment'] = (

f'Salt uses the {HASH_METADATA_KEY} metadata key internally,'
'do not pass it to the boto_s3.object_present state.'

return ret
combined_extra_args['Metadata'][HASH_METADATA_KEY] = digest
Remove upload-only keys from full set of extra_args
to create desired dict for comparisons
desired_metadata = dict(

(k, v) for k, v in combined_extra_args.items() # No need to six anymore
if k not in UPLOAD_ONLY_EXTRA_ARGS

)

Some args (SSE-C, RequestPayer) must also be passed to get_metadata
metadata_extra_args = dict(

(k, v) for k, v in combined_extra_args.items() # No need for six anymore
if k in GET_METADATA_EXTRA_ARGS

)
r = await hub.exec.boto.s3.get_object_metadata(

name,
extra_args=metadata_extra_args,
region=region,

(continues on next page)

39.5. Full Function Example 139

idem Documentation

(continued from previous page)

key=key,
keyid=keyid,
profile=profile,

)
if 'error' in r:

ret['result'] = False
ret['comment'] = f'Failed to check if S3 object exists: {r["error"]}.' # Use␣

→˓fstrings
return ret

if r['result']:
Check if content and metadata match
A hash of the content is injected into the metadata,
so we can combine both checks into one
Only check metadata keys specified by the user,
ignore other fields that have been set
s3_metadata = dict(

(k, r['result'][k]) for k in STORED_EXTRA_ARGS
if k in desired_metadata and k in r['result']

)
if s3_metadata == desired_metadata:

ret['result'] = True
ret['comment'] = f'S3 object {name} is present.'
return ret

action = 'update'
else:

s3_metadata = None
action = 'create'

Some Salt code goes out of its way to use salt libs, often it
is more appropriate to just call the supporting lib directly
changes_diff = ''.join(difflib.unified_diff(

yaml.dump(s3_metadata, default_flow_style=False).splitlines(True),
yaml.dump(desired_metadata, default_flow_style=False).splitlines(True),

))

if ctx['test']:
ret['result'] = None
ret['comment'] = f'S3 object {name} set to be {action}d.'
ret['comment'] += f'\nChanges:\n{changes_diff}'
ret['changes'] = {'diff': changes_diff}
return ret

r = await hub.boto.s3.upload_file(
source,
name,
extra_args=combined_extra_args,
region=region,
key=key,
keyid=keyid,
profile=profile,

)

(continues on next page)

140 Chapter 39. Migrating Support From Salt

idem Documentation

(continued from previous page)

if 'error' in r:
ret['result'] = False
ret['comment'] = f'Failed to {action} S3 object: {r["error"]}.'
return ret

ret['result'] = True
ret['comment'] = f'S3 object {name} {action}d.'
ret['comment'] += f'\nChanges:\n{changes_diff}'
ret['changes'] = {'diff': changes_diff}
return ret

39.5. Full Function Example 141

idem Documentation

142 Chapter 39. Migrating Support From Salt

CHAPTER

FORTY

RELEASES

40.1 Idem Release 3

This is the initial public release of Idem, the release number 3 was chosen because the Salt State system should be
considered version 1, with an internal version 2.

This release introduces Idem to the world, it takes the Salt State system and migrates it to POP. In doing so the Salt State
system has been simplified, extended, and revamped to become a standalone language and interface while following
the ideals of POP to make it pluggable into other application stacks.

40.1.1 Now Pluggable!

The Salt State system exists as a single large .py file inside of Salt, the compiler and runtime are all inside a couple
of classes and the system is tightly coupled with the Salt minion and execution runtime and environment. This also
made the Salt state system very static and difficult to extend. For instance, an old saying on the Salt developer team
was “How do we create new requisites for Salt? Ask Tom to make it”.

My goal in Idem was to make it in such a way that it could be completely decoupled from Salt, modernize the foundation,
add asyncio, and make the system easier to extend. Now the render, compile, and runtime have been separated out, the
runtime has been completely rewritten and things like requisites can be added as plugins and runtime rules. Idem can
also execute multiple runs concurrently within the same process, and can execute states in parallel or serially.

Idem can execute states in an imperative way or in a declarative way using requisites. This gives developers the best of
both worlds. The ability to optimize execution for time or for ease of development and debugging.

40.1.2 Runs Standalone!

The Idem command can be executed against a code tree directly just like a programming language. Instead of setting
up minions, masters etc, just make a code tree with sls files and run Idem with the sls fils(s) you want to execute.

40.1.3 Code Sources are Pluggable

Instead of tying the runtime statically to grabbing sources via Salt, the sources are now pluggable. This release only has
a local filesystem plugin but it will be easy to add code sources that are over network connections. This should make
Idem execution function without needing to have any form of code deployment, but that Idem will be able to execute
directly from any network source, like http, S3, or git.

143

idem Documentation

40.1.4 Rendering is Separate

The render system in Salt turned out to be a generally useful system with virtually every attempt to read in files with
structured data wanting to be processed though the render system. So for Idem the render system has been separated
into a standalone project called rend. This project is written in POP and can be app-merged into any other POP project
(like idem!). This makes the powerful render system from Salt available to other projects. In fact it is already being
used bu other projects like heist.

40.1.5 Idem is a Language Runtime

One of the main issues with configuration management tools is that we end up needing to re-write the backend com-
ponents to work in additional languages and interfaces. The goal of Idem is to make this limitation go away! Instead
of making yet another language, Idem ingests structured data. This means that any language can be written on top of
Idem as an extension to rend. So Idem can be seen not as a yaml based language for idempotent management. But
instead as assembly code that languages can be built on top of.

I feel that the language war in configuration management is one of the primary limiting factors for the industry, and
why we end up producing new languages to solve specific problems. My hope here is that support for all the managed
interfaces can be built into Idem and then made available to any app that wants to use them.

40.2 Idem 4 - Beyond Salt

Idem 4 is a monumental release! This marks the first release where major support for an interface has been made avail-
able to app-merge into Idem. This release also marks the first major feature additions to Idem beyond the capabilities
found in the Salt state system.

40.2.1 Late Rendering With Render Blocks

This release adds the ability to to execute late rendering using a new feature in rend called render blocks. This allows
for blocks of code to be rendered during the runtime and added to the overall execution of the state. This makes it easy
to break apart the execution to be able to take arbitrary data during the run and apply it to the execution.

40.2.2 Transparent Requisites

Transparent requisites is a powerhouse feature! This new capability allows for state plugins to define requisites that will
be automatically added into the mix. This makes it possible for the author of a state plugin to define that if a certain
state is ever used, Idem will search the runtime to determine if any of the states defined as transparent requisites have
been used and apply them with the desired requite.

40.3 Idem 5 - Encrypted Secrets

Idem 5 comes with a much needed addition, the ability to store encrypted data at rest. This addition introduces a new
dep and project that is used for the work of encrypted datastore - Takara. Takara is the standalone manager for keeping
track of this data at rest, it allows for data to be easily stored in a pluggable and dynamic way. Takara has also been
app-merged into Idem, so you can initiate, unseal, and use takara secret data stores from Idem.

144 Chapter 40. Releases

idem Documentation

40.4 Idem 5.1

This is a bugfix release of Idem. This release fixes a few issues found inside the state runtime.

For details on the repaired issues please see the following issues on Github:

#11 #12 #13 #14

40.5 Idem 6

With great pleasure we are excited to release Idem 6! This release includes a number of major feature enhancements
that make the underlying platform and language significantly more powerful.

40.5.1 Mod System

The mod system allows for last minute injection to execute which can modify the data being executed right before it is
run. This also comes with the mod_aggregate system, which allows state modules to implement a function in a state
plugin called mod_aggregate which can be used to modify the execution right before it is called.

40.5.2 Listen

The new Listen requisite allows for modifications to a state to be executed after the entire run completes. This requisite
is useful for those who want to be able to react to changes in states without modifying the order of execution.

40.5.3 Any and All Requisites

A new system is now in place that allows for requisites to be triggered based either all requisites being met, or just some
of the requisites being met. The new plugin subsystem allows for deeply dynamic handling of this intersection in the
evaluation of execution.

40.6 Idem 7

Idem 7 introduces two major new features. A revamped, and easier to use cli, and the new acct system.

40.6.1 New CLI

The new cli makes calling states and execution execution modules significantly easier. Now you can just can an sls file
directly, or use the existing sls tree settings. This makes idem work more like a programming language.

idem state cloud.sls

idem exec cmd.run 'ls -l' shell=True

This new simplification should make the use of idem much easier!

40.4. Idem 5.1 145

idem Documentation

40.6.2 The Acct system

The new acct system allows for account information to be loaded via plugins into idem. It allows for plugins to be
provided by cloud providers that load up the api credentials that should be passed through to the cloud providers.

This systems allows for multiple cloud providers, and multiple accounts, to be targeted simultaneously. So a single
execution of idem can orchestrate setting up and maintaining resources across multiple clouds and apis.

It can have cloud specific login plugins, or it can run from a single, encrypted file. The single encrypted file can work
across multiple cloud providers and does not require cloud specific plugins.

40.7 Idem 7.1

Idem 7.1 extends the capabilities of Idem 7 by allowing the acct system to be used by idem exec instead of just idem
state. This also makes it possible to pass in a ctx option to exec functions, like state functions.

40.8 Idem 7.4

Idem 7.4 adds the tool sub for dynamically loading helper functions in idem projects.

40.9 Idem 12.0.0

Idem 12.0.0 introduces 2 new features. kwarg credentials for batch runs, and recursive contracts for exec/state returns.

40.9.1 Recursive Contracts for exec/state returns

States

States already implicitly expect a dictionary with specific keys. With a recursive contracts however, malformed state
returns are caught as soon as possible. The expected format for a state return is:

{
"name": "<state name>",
"changes": {

"<change name>": {
"old": <The status of the affected resource before the change>,
"new": <The status of the affected resource after the change>

},
}
"result": True|False,
"comment": "<A comment about the state run>",

}

146 Chapter 40. Releases

idem Documentation

Exec

Exec modules now give a warning (in a future release this will be a raised exception) if the return isn’t formatted
properly. The expected format for an exec return is:

{
"result": True|False,
"ret": <The return date from the exec module run>,
"comment": <A status code, exception, or other context for the given result>,

}

40.9.2 Kwarg Credentials for internal batch runs

idem.state.batch can run multiple states at once from within python code. This is useful if you don’t want to run idem
states from the cli, but from your own python project. Now batch runs will accept encrypted or unencrypted acct
information as kwargs.

First, put your credentials into a yaml file. Check the documentation for the idem provider to see what the available
parameters are.

credentials.yaml:

acct_provider_name:
default:

profile_kwarg1: value1
profile_kwarg2: value2

another_profile_name:
profile_kwarg1: value1
profile_kwarg2: value2

Use the acct program to encrypt the credentials

acct encrypt credentials.yaml

The output of this command will be the fernet algorithm key used to encrypt your credentials.

output:

jIgQhT9j9g9-c5yZ47R95f-zpQ_KYzdrtXwXc5R7eKg=

Note: Alternatively, if the ACCT_KEY environment variable is set with a valid fernet key, it will be used by the acct
encrypt command to encrypt the file.

After encrypting credentials.yaml, a new file will have been created called “credentials.yaml.fernet”. The contents of
this file can be passed to a batch run to safely get provider credentials to idem.

cat credentials.yaml.fernet

output:

gAAAAABgo20bb2XCzM6fN82v7zSaDtVPitexSUk7nhO9MfAUQHvr_YKqjlzMC9NFG3IFt-
→˓nie7DqFQH9lRPuhdRrLYoojUBILQ==%

40.9. Idem 12.0.0 147

idem Documentation

Note: It is not wise to send encrypted credentials and their decryption key together; use a pre-defined trusted fernet
key at both endpoints of your idem app.

idem app example:

import asyncio
import os
import pop.hub
import uuid

hub = pop.hub.Hub()
hub.pop.sub.add(dyne_name="idem")
hub.pop.loop.create()
hub.pop.config.load(["idem"], "idem")

states = {"state name": {"test.succeed_without_changes": {"kwarg1": "value1"}}}
unencrypted_profiles = {

"provider_name": {"yet_another_profile_name": {"kwarg1": "safe value"}}
}
acct_key = os.environ.get("ACCT_KEY", "jIgQhT9j9g9-c5yZ47R95f-zpQ_KYzdrtXwXc5R7eKg=")

hub.pop.Loop.run_until_complete(
hub.idem.state.batch(

states=states,
profiles=unencrypted_profiles,
encrypted_profiles="gAAAAABgo20bb2XCzM6fN82v7zSaDtVPitexSUk7nhO9MfAUQHvr_

→˓YKqjlzMC9NFG3IFt-nie7DqFQH9lRPuhdRrLYoojUBILQ==",
acct_key=acct_key,
default_acct_profile="default",

)
)

40.9.3 Get status of internal batch run

Specify the “name” parameter in idem.state.batch to be able to retrieve the status of an internal run with hub.state.status.

status = hub.idem.state.status(name)
print(status)

stdout:

{
"sls_sources": [

"json://{'state name':{'test.succeed_without_changes':{'kwarg1':'value1'}}}"
],
"test": False,
"errors": [],
"running": {},
"acct_profile": "default",
"status": 0,

(continues on next page)

148 Chapter 40. Releases

idem Documentation

(continued from previous page)

"status_name": "FINISHED",
}

40.10 Idem 12.0.2

Idem 12.0.2 rearranges the parameters of hub.idem.ex.ctx() and parses them slightly differently.

The “path” or reference on the hub to the exec module being called is the first argument. It can now be just the name
of the sub under “exec” that is being referenced.

For example:

In previous versions of idem, the acct_profile keyword needs to be specified with a full path:

ctx = hub.idem.ex.ctx(path="exec.my_cloud.*", acct_profile="my_profile")

In idem versions 12.0.2 forward, the minimum amount of information is also acceptable:

ctx = hub.idem.ex.ctx("my_cloud", "my_profile")

This can be used to easily get acct information for idem exec module calls in state file jinja:

{% set ctx = hub.idem.ex.ctx("my_cloud", "my_profile") %}
test_minimal_ctx:
test.succeed_with_comment:
- comment: {{ hub.exec.test.ctx(ctx).ret }}

40.11 Idem 13.0.0

Idem 13.0.0 introduces the describe subcommand to create SLS files.

40.11.1 Describe Subcommand

A new subcommand, “idem describe” will call the “describe” command for the resource associated with the current
account. Using the test states built into idem, we can explore this feature. First we will describe the “test” submodule
of idem and output the yaml results to a file called “test.sls”.

$ idem describe test --output=yaml > test.sls

The contents of test.sls will be as follows:

Description of test.anop:
test.anop:
- name: anop

Description of test.configurable_test_state:
test.configurable_test_state:
- name: configurable_test_state
- changes: true
- result: true

(continues on next page)

40.10. Idem 12.0.2 149

idem Documentation

(continued from previous page)

- comment: ''
Description of test.fail_with_changes:
test.fail_with_changes:
- name: fail_with_changes

Description of test.fail_without_changes:
test.fail_without_changes:
- name: fail_without_changes

Description of test.mod_watch:
test.mod_watch:
- name: mod_watch

Description of test.none_without_changes:
test.none_without_changes:
- name: none_without_changes

Description of test.nop:
test.nop:
- name: nop

Description of test.succeed_with_changes:
test.succeed_with_changes:
- name: succeed_with_changes

Description of test.succeed_with_comment:
test.succeed_with_comment:
- name: succeed_with_comment
- comment: null

Description of test.succeed_without_changes:
test.succeed_without_changes:
- name: succeed_without_changes

Description of test.treq:
test.treq:
- name: treq

Description of test.update_low:
test.update_low:
- name: update_low

The output of “describe” represents a completely valid idem sls file. It shows the current status of your idem resource.
You can manage your idem resources by modifying this file then running “idem state” on the file.

$ idem state test.sls

Output

ID: Description of test.anop

Function: test.anop
Result: True

Comment: Success!
Changes:

ID: Description of test.configurable_test_state
Function: test.configurable_test_state
Result: True

Comment:
Changes: testing:

(continues on next page)

150 Chapter 40. Releases

idem Documentation

(continued from previous page)

old:

Unchanged
new:

Something pretended to change

ID: Description of test.fail_with_changes
Function: test.fail_with_changes
Result: False

Comment: Failure!
Changes: testing:

old:

Unchanged
new:

Something pretended to change

ID: Description of test.fail_without_changes
Function: test.fail_without_changes
Result: False

Comment: Failure!
Changes:

ID: Description of test.mod_watch
Function: test.mod_watch
Result: True

Comment: Watch ran!
Changes: watch:

True

ID: Description of test.none_without_changes
Function: test.none_without_changes
Result: None

Comment: Success!
Changes:

ID: Description of test.nop
Function: test.nop
Result: True

Comment: Success!
Changes:

ID: Description of test.succeed_with_changes
Function: test.succeed_with_changes
Result: True

Comment: Success!
Changes: testing:

old:

Unchanged
new:

Something pretended to change

(continues on next page)

40.11. Idem 13.0.0 151

idem Documentation

(continued from previous page)

ID: Description of test.succeed_with_comment

Function: test.succeed_with_comment
Result: True

Comment: None
Changes:

ID: Description of test.succeed_without_changes
Function: test.succeed_without_changes
Result: True

Comment: Success!
Changes:

ID: Description of test.update_low
Function: test.update_low
Result: True

Comment: Success!
Changes:

ID: king_arthur
Function: test.nop
Result: True

Comment: Success!
Changes:

ID: Description of test.treq
Function: test.treq
Result: True

Comment: Success!
Changes:

40.11.2 Implementing describe functionality

Create a function called “describe” in a states plugin. It should output valid input for the present function of that plugin
as a dictionary

async def describe(hub, ctx):
This function returns a description of the resource -- one that "idem state" can␣

→˓use to
to completely recreate the resource with different credentials
or manage the resource with the same credentials
return {

"Unique State Name": {
"reference.to.present.function": {

[{"name": "resource name"}, {"resource_kwarg": "resource_value"}]
}

}
}

152 Chapter 40. Releases

idem Documentation

40.12 Idem 14.0.0

Idem 14.0.0 introduces auto_state exec module contracts. Other contracts are also available for states and exec modules
as described below.

40.12.1 Auto State

The “auto_state” contract can be implemented for exec modules. It enforces that a get, list, create, update, and delete
function exist for the exec module plugin with specific parameters and returns.

Implementing this contract allows idem to dynamically construct a state for the resource.

Here is an example of how to implement the auto_state contract in an exec module plugin:

/my_project_root/my_project/exec/my_cloud/my_resource.py
from typing import Any
from typing import Dict

__contracts__ = ["auto_state"]
__func_alias__ = {"list_": "list"}

async def get(hub, ctx, name, **kwargs) -> Dict[str, Any]:
"""
Create a dict that describes an instance of this resource.
The values described with "get" should match what is possible to change with the

→˓"update" function.
If the resource does not exist then return an empty dict.
"""
result = dict(comment="", result=True, ret=None)
result["ret"] = {}
return result

async def list_(hub, ctx, **kwargs) -> Dict[str, Any]:
"""
List the resource, the "ret" value should be a dict whose keys are a unique name for␣

→˓each instance of the resource
The values are a description of the resource instances that matches the output of␣

→˓the "get" function
"""
result = dict(comment="", result=True, ret=None)
result["ret"] = {"Unique name": {"key": "value"}}
result["comment"] = f"Created '{name}'"
return result

async def create(hub, ctx, name, **kwargs) -> Dict[str, Any]:
"""
Create the named instance of this resource, assume it does not yet exist.
Any kwargs added to this function should have a default value (use None if␣

→˓necessary).
Additional kwargs will be used to determine how to create valid "present" states for␣

(continues on next page)

40.12. Idem 14.0.0 153

idem Documentation

(continued from previous page)

→˓this resource using "idem describe"
"""
result = dict(comment="", result=True, ret=None)
result["ret"] = "TODO call the create operation for this resource with **kwargs"
result["comment"] = f"Created '{name}'"
return result

async def update(hub, ctx, name, **kwargs) -> Dict[str, Any]:
"""
Update the named instance of this resource, assume it already exists.

`ctx.before` has the current status of the resource.
`kwargs` represents the desired state of the resource

Compare `ctx.before` to the "kwargs" to update the resource to the desired state.
"""
result = dict(comment="", result=True, ret=None)
result["ret"] = "TODO call the update operation for this resource with **kwargs"
result["comment"] = f"Updated '{name}'"
return result

async def delete(hub, ctx, name, **kwargs) -> Dict[str, Any]:
"""
Delete the named instance of this resource, assume it already exists
"""
result = dict(comment="", result=True, ret=None)
result["ret"] = "TODO call the delete operation for this resource with **kwargs"
result["comment"] = f"Deleted '{name}'"
return result

40.12.2 Soft Fail

Implementing the “soft_fail” contract for exec or state plugins will catch any thrown errors. The error message will be
injected into the “comment” of the state or exec return and the status will be set to “False”.

There can be only one “call” contract for any given function on the hub. “soft_fail” will be overridden for this specific
function if your exec module implements another call contract.

For state modules:

__contracts__ = ["soft_fail"]

For exec modules:

__contracts__ = ["soft_fail"]

154 Chapter 40. Releases

idem Documentation

40.12.3 Returns

Every exec module and state module implicitly implements the “returns” contract recursively.

This contract enforces that the return values of states and exec modules follow a specific pattern.

exec returns

The return from all exec modules should be a dictionary with the keys “result”, “comment”, and “ret”. For example:

def exec_module(hub, ctx):
return {

The result of the exec module operation, "True" if the exec module ran␣
→˓successfully, else "False"

"result": True | False,
Any comment on the run of this exec module, such as errors or status codes
"comment": "",
Any return value from this exec module
"ret": object(),

}

state returns

The return from all state modules should be a dictionary with the keys “result”, “comment”, “name”, and “changes”.
For example:

import dict_tools.differ as difftools

def state_module(hub, ctx, name):
The status of the resource before the state was applied
before = {}
The status of the resource after the state was applied
after = {}
return {

The result of state exec module operation, "True" if the state ran␣
→˓successfully, else "False"

"result": True | False,
Any comment on the run of this state module, This is used to qualify HOW the␣

→˓state succeeded or failed
"comment": "",
The name that was passed as a parameter to this state module
"name": name,
"changes": difftools.deep_diff(before, after),

}

40.12. Idem 14.0.0 155

idem Documentation

40.12.4 Resource

This contract enforces “present”, “absent”, and “describe” functions in a states plugin. This contract implies the
“describe” contract.

import dict_tools.differ as difftools

__contracts__ = ["resource"]

async def present(hub, ctx, name, **kwargs):
"""
Check if a resource exists, if it doesn't create it.
If the resource exists, make sure that it is in the state described by "kwargs"
"""
before = {}
after = {}
return {

"result": True | False,
"comment": "",
"name": name,
"changes": difftools.deep_diff(before, after),

}

async def absent(hub, ctx, name, **kwargs):
"""
Check if a resource exists, if it does, delete it.
"""
before = {}
after = {}
return {

"result": True | False,
"comment": "",
"name": name,
"changes": difftools.deep_diff(before, after),

}

async def describe(hub, ctx):
"""
Create valid present states for every instance of this resource using the given "ctx"
"""
return {

"unique_present_state_name": {
"present.function.ref": [{"present_kwarg": "present_value"}]

}
}

156 Chapter 40. Releases

idem Documentation

40.13 Idem 15.0.0

Idem 15.0.0 introduces reconciliation loop plugin. When invoked from the CLI, the reconciliation loop plugin re-
applies the state.

The reconciliation is skipped altogether or stops when the state returns ‘result=True’ and there are no ‘changes’.

Reconciliation loop also stops if the state results/changes have not changed during the last 3 iterations.

40.13.1 Reconciler Plugin

Reconciler plugin provided by idem is called ‘basic’. It includes a static wait time of 3 seconds between iterations. By
default the ‘none’ plugin is used, which skips reconciliation.

40.13.2 CLI

The reconciler plugin is specified as an argument to the idem state CLI.

For example:

--reconciler=basic | -R=basic | -r=basic

40.13.3 LOOP

To implement a reconcile plugin provide a method like this:

async def loop(
hub,
name,
sls_sources,
render,
runtime,
cache_dir,
sls,
test,
acct_file,
acct_key,
acct_profile,

):

The reconciler loop should return a dictionary like that:

{
"re_runs_count": <number reconciliation loop iterations>,
"require_re_run": <True or False>,

}

40.13. Idem 15.0.0 157

idem Documentation

40.14 Idem 15.0.1

Idem 15.0.1 introduces ‘old_state’ and ‘new_state’ to state returns for the ‘resource’ contract. It is no longer
required to return ‘changes’ to implement ‘resource’ contract for Idem states. Idem generates ‘changes’ automat-
ically based on ‘old_state’ and ‘new_state’ in state returns.

Note: It will be required to return ‘old_state’ and ‘new_state’ for ‘resource’ contract in the future release of
Idem.

40.15 Idem 16.0.0

Idem 16.0.0 implements evbus in idem cli

40.15.1 Writing an ingress plugin

Refer to the pop-evbus repository for how to write an ingress plugin

40.15.2 Setting up credentials

Configured profiles are formatted as follows:

provider:
profile_name:

profile_data:

The profile parameter for the idem event put and put_nowait functions specifies which profile_name should be used
for firing an event. If no profile is specified, the profiles called “default” will be used. There can be multiple providers
with the same profile name, the event will be propagated to all providers that have a matching profile name. A context
(ctx) will be generated that will be sent to the appropriate ingress plugin’s publish function based on profile.

Firing Events

40.15.3 from code

The body is any serializable data that comprises the main part of the event The profile is the ingress profile from
acct that this event should be published to.

Asynchronous put:

async def my_func(hub):
await hub.idem.event.put(body={"message": "event content"}, profile="default")

Synchronous put:

def my_func(hub):
hub.idem.event.put_nowait(body={"message": "event content"}, profile="default")

158 Chapter 40. Releases

https://pypi.org/project/pop-evbus
https://gitlab.com/vmware/idem/evbus/-/blob/master/docs/topics/ingress_plugins.rst

idem Documentation

40.15.4 from jinja/sls

Events can also be fired from within an idem sls file via jinja:

{%- hub.idem.event.put_nowait(body={"message": "event content"}, profile="default") %}

CLI

You can fire one-off events from the CLI like so:

idem exec test.event ingress_profile="default" body="my_event" --serialize-plugin="json"

Testing

Create a credentials.yml file for connecting to local kafka/rabbitmq containers:

pika:
test_development_evbus_pika:
connection:
host: localhost
port: 5672
login: guest
password: guest

routing_key: my_test_routing_key
kafka:
test_development_evbus_kafka:
connection:
bootstrap_servers: localhost:9092

topics:
- my_test_topic

Encrypt the credentials file and set the ACCT environment variables

$ export ACCT_KEY=$(idem encrypt credentials.yml)
$ export ACCT_FILE="$PWD/credentials.yml.fernet"

Start a local rabbitmq server to run the tests:

$ docker run -p 5672:5672 \
--env RABBITMQ_HOSTS=rabbitmq \
--env RABBITMQ_PORT=5672 \
--env RABBITMQ_USER=guest \
--env RABBITMQ_PASS=guest \
--env RABBITMQ_PROTOCOL=amqp \
rabbitmq:management

Start a local kafka server to run the tests:

$ docker run -p 2181:2181 -p 443:9092 -p 9092:9092 \
--env ADVERTISED_LISTENERS=PLAINTEXT://localhost:443,INTERNAL://localhost:9093 \
--env LISTENERS=PLAINTEXT://0.0.0.0:9092,INTERNAL://0.0.0.0:9093 \
--env SECURITY_PROTOCOL_MAP=PLAINTEXT:PLAINTEXT,INTERNAL:PLAINTEXT \

(continues on next page)

40.15. Idem 16.0.0 159

idem Documentation

(continued from previous page)

--env INTER_BROKER=INTERNAL \
krisgeus/docker-kafka

Install the idem test requirements:

$ pip install -r requirements/test.in

Run the tests with pytest:

$ pytest tests

Logging Handler

idem adds support for a new logging handler, the queue. All log messages will be published as events to ingress queues
with a idem-logger profile.

idem exec test.event ingress_profile="idem-logger" body="my_event" --log-level=debug --
→˓log-handler=event

40.16 Idem 17.0.0

Idem 17.0.0 adds support for argument binding to Idem SLS structure. Argument binding references are used to set
argument value of a state definition to the result of another state execution.

40.17 Argument Binding References

An argument binding reference sets the state definition argument value to the result of another state execution. In this
way, argument binding references determine the order of state execution in the structured layer state (SLS) file structure.

An argument binding reference uses the following format:

“${<cloud>:<state>:<property_path>}”

Where <cloud> is the state cloud path reference (excluding function reference), <state> is the state declaration ID, and
<property_path> is a colon (:) delimited path to the property value.

In the following example, State_B will be executed before State_A because the State_A argument “state_B_id” requires
the “ID” value from State_B output.

State_A:
cloud.instance.present:

- name: "Instance A"
- state_B_id: "${cloud:State_B:ID}"

State_B:
cloud.instance.present:

- name: "Instance B"

160 Chapter 40. Releases

idem Documentation

40.17.1 Indexes

An argument binding reference can contain an index to point to a specific element of a collection property, as shown
in the following example.

State_A:
cloud.instance.present:
- name: "Instance A"
- state_B_address: "${cloud:State_B:nics[0]:address}"

State_B:
cloud.instance.present:

- name: "Instance B"
- nics:

- network_name: "Network_1"
address is populated after state is executed
address:

- network_name: "Network_2"
address is populated after state is executed
address:

An argument binding reference can contain a wildcard (*) index to collect all elements in a collection property. In the
following example, State_A “state_B_addresses” argument will be set to a list of 2 addresses, one address for each nic
of State_B.

State_A:
cloud.instance.present:
- name: "Instance A"
- state_B_addresses: "${cloud:State_B:nics[*]:address}"

State_B:
cloud.instance.present:
- name: "Instance B"
- nics:

- network_name: "Network_1"
address is populated after state is executed
address:

- network_name: "Network_2"
address is populated after state is executed
address:

40.17.2 “Resource” Contract

To support argument binding, a cloud plugin must implement a “resource” contract, where every state execution func-
tion must return a “new_state” property as part of the return dictionary. The “new_state” is used to resolve argument
binding requisites.

40.17. Argument Binding References 161

idem Documentation

40.17.3 Arg_bind Requisites

Behind-the-scenes argument binding references are implemented using the Idem requisite system, where argument
binding references are parsed during the SLS compilation phase and added to high data as arg_bind requisites. During
arg_bind requisite execution, the “new_state” property returned after function execution is used to resolve the value of
the referenced parameter.

The following example demonstrates SLS high data after the compilation phase, where “${cloud:State_B:ID}” is re-
solved as the arg_bind requisite.

State_A:
cloud.instance.present:

- name: "Instance A"
- state_B_id: "${cloud:State_B:ID}"
- arg_bind:
- cloud:

- State_B
- ID: state_B_id

State_B:
cloud.instance.present:
- name: "Instance B"

162 Chapter 40. Releases

CHAPTER

FORTYONE

CONTRIBUTING GUIDE

Contributions are what make the open source community such an amazing place to learn, inspire, and create in. Any
contributions you make are greatly appreciated!

41.1 TL;DR Quickstart

1. Have pre-requisites completed:

• git

• nox

• pre-commit

• Python 3.6+

2. Fork the project

3. git clone your fork locally

4. Create your feature branch (ex. git checkout -b amazing-feature)

5. Setup your local development environment

setup venv
python3 -m venv .venv
source .venv/bin/activate
pip install -U pip setuptools wheel pre-commit nox

pre-commit configuration
pre-commit install

6. Hack away!

7. Commit your changes (ex. git commit -m 'Add some amazing-feature')

8. Push to the branch (ex. git push origin amazing-feature)

9. Open a pull request

For the full details, see below.

163

idem Documentation

41.2 Ways to contribute

We value all contributions, not just contributions to the code. In addition to contributing to the code, you can help the
project by:

• Writing, reviewing, and revising documentation, modules, and tutorials

• Opening issues on bugs, feature requests, or docs

• Spreading the word about how great this project is

The rest of this guide will explain our toolchain and how to set up your environment to contribute to the project.

41.3 Overview of how to contribute to this repository

To contribute to this repository, you first need to set up your own local repository:

• Fork, clone, and branch the repo

• Set up your local preview environment

After this initial setup, you then need to:

• Sync local master branch with upstream master

• Edit the documentation in reStructured Text

• Preview HTML changes locally

• Open a PR

Once a merge request gets approved, it can be merged!

41.4 Prerequisites

For local development, the following prerequisites are needed:

• git

• Python 3.6+

• Ability to create python venv

41.4.1 Windows 10 users

For the best experience, when contributing from a Windows OS to projects using Python-based tools like pre-commit,
we recommend setting up Windows Subsystem for Linux (WSL), with the latest version being WSLv2.

The following gists on GitHub have been consulted with success for several contributors:

• Official Microsoft docs on installing WSL

• A list of PowerShell commands in a gist to Enable WSL and Install Ubuntu 20.04

– Ensure you also read the comment thread below the main content for additional guidance about using Python
on the WSL instance.

164 Chapter 41. Contributing Guide

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://realpython.com/installing-python/
https://realpython.com/python-virtual-environments-a-primer/
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://gist.github.com/ScriptAutomate/f94cd44dacd0f420fae65414e717212d

idem Documentation

We recommend Installing Chocolatey on Windows 10 via PowerShell w/ Some Starter Packages. This installs git,
microsoft-windows-terminal, and other helpful tools via the awesome Windows package management tool,
Chocolatey.

choco install git easily installs git for a good Windows-dev experience. From the git package page on Choco-
latey, the following are installed:

• Git BASH

• Git GUI

• Shell Integration

41.5 Fork, clone, and branch the repo

This project uses the fork and branch Git workflow. For an overview of this method, see Using the Fork-and-Branch
Git Workflow.

• First, create a new fork into your personal user space.

• Then, clone the forked repo to your local machine.

SSH or HTTPS
git clone <forked-repo-path>/idem.git

Note: Before cloning your forked repo when using SSH, you need to create an SSH key so that your local Git repository
can authenticate to the GitLab remote server. See GitLab and SSH keys for instructions, or Connecting to GitHub with
SSH.

Configure the remotes for your main upstream repository:

Move into cloned repo
cd idem

Choose SSH or HTTPS upstream endpoint
git remote add upstream git-or-https-repo-you-forked-from

Create new branch for changes to submit:

git checkout -b amazing-feature

41.6 Set up your local preview environment

If you are not on a Linux machine, you need to set up a virtual environment to preview your local changes and ensure
the prerequisites are met for a Python virtual environment.

From within your local copy of the forked repo:

Setup venv
python3 -m venv .venv
If Python 3.6+ is in path as 'python', use the following instead:
python -m venv .venv

(continues on next page)

41.5. Fork, clone, and branch the repo 165

https://gist.github.com/ScriptAutomate/02e0cf33786f869740ee963ed6a913c1
https://chocolatey.org/why-chocolatey
https://blog.scottlowe.org/2015/01/27/using-fork-branch-git-workflow/
https://blog.scottlowe.org/2015/01/27/using-fork-branch-git-workflow/
https://docs.gitlab.com/ee/ssh/README.html
https://docs.github.com/en/github-ae@latest/github/authenticating-to-github/connecting-to-github-with-ssh
https://docs.github.com/en/github-ae@latest/github/authenticating-to-github/connecting-to-github-with-ssh

idem Documentation

(continued from previous page)

Activate venv
source .venv/bin/activate
On Windows, use instead:
.venv/Scripts/activate

Install required python packages to venv
pip install -U pip setuptools wheel pre-commit nox
pip install -r requirements/base.txt

Setup pre-commit
pre-commit install

41.6.1 pre-commit and nox Setup

This project uses pre-commit and nox to make it easier for contributors to get quick feedback, for quality control, and
to increase the chance that your merge request will get reviewed and merged.

nox handles Sphinx requirements and plugins for you, always ensuring your local packages are the needed versions
when building docs. You can think of it as Make with superpowers.

41.6.2 What is pre-commit?

pre-commit is a tool that will automatically run local tests when you attempt to make a git commit. To view what
tests are run, you can view the .pre-commit-config.yaml file at the root of the repository.

One big benefit of pre-commit is that auto-corrective measures can be done to files that have been updated. This includes
Python formatting best practices, proper file line-endings (which can be a problem with repository contributors using
differing operating systems), and more.

If an error is found that cannot be automatically fixed, error output will help point you to where an issue may exist.

41.7 Sync local master branch with upstream master

If needing to sync feature branch with changes from upstream master, do the following:

Note: This will need to be done in case merge conflicts need to be resolved locally before a merge to master in the
upstream repo.

git checkout master
git fetch upstream
git pull upstream master
git push origin master
git checkout my-new-feature
git merge master

166 Chapter 41. Contributing Guide

https://pre-commit.com/
https://nox.thea.codes/en/stable/

idem Documentation

41.8 Preview HTML changes locally

To ensure that the changes you are implementing are formatted correctly, you should preview a local build of your
changes first. To preview the changes:

Activate venv
source .venv/bin/activate
On Windows, use instead:
.venv/Scripts/activate

Generate HTML documentation with nox
nox -e 'docs-html(clean=False)'

Sphinx website documentation is dumped to docs/_build/html/*
You can view this locally
firefox example
firefox docs/_build/html/index.html

Note: If you encounter an error, Sphinx may be pointing out formatting errors that need to be resolved in order for
nox to properly generate the docs.

41.9 Testing a pop project

View all nox targets
nox -l

Output version of Python activated/available
python --version OR
python3 --version

Run appropriate test
Ex. if Python 3.8.x
nox -e 'tests-3.8'

This project is a pop project which makes use of pytest-pop, a pytest plugin. For more information on
pytest-pop, and writing tests for pop projects:

• pytest-pop README

• pytest documentation

41.8. Preview HTML changes locally 167

https://gitlab.com/saltstack/pop/pytest-pop/-/blob/master/README.rst
https://docs.pytest.org/en/stable/contents.html

idem Documentation

41.10 Contribution Guidelines

Before asking for a final review for a PR into an idem project, the following guidelines must be met:

41.10.1 Tests

• Tests are written for changes

• Tests provide full coverage of the changed code

41.10.2 Documentation

• Docs are written for feature changes

• Functions have Typehinted parameters

• Code is sufficiently documented with comments

• Parameters are explained in detail in function docstrings

• rst-style examples of the function’s usage are included in its docstring

41.10.3 Code Style

• Code is readable and contains comments

• Code contains sufficient logging, including debug logging

• Errors are descriptive

• Follow POP best practices - Plugins are used instead of Classes wherever possible - POP code is accessed via the
hub, not python import - Output with hub.log.debug() not print() - The hub is not explicitly passed to functions -
Code is organized in the filesystem in a meaningful way - There are no long files – code is separated into plugins
with meaningful names (no massive “utils.py” file) - Plugins are organized in a way that will be easily merged
with other projects - Subsystems have contracts to standardize plugin structure - ctx.test must be implemented in
idem states

• Code is written in a re-usable way

41.10.4 Issues

When reporting a bug, the following criteria should be met:

• Bugs include complete steps to reproduce including

– Bugs include a version report from pip freeze

– Bugs include the full cli command used to reach the error

– Bugs include sanitized supporting sls/credential files

– Bugs include output with --log-level=debug logging

– Bugs include the full error output

168 Chapter 41. Contributing Guide

idem Documentation

41.10.5 Pull Requests

• All TODOs are resolved

• All comments by maintainers in code-review are marked “resolved” by maintainers

• All existing tests are passing in the PR pipeline

• The origin pipeline has all tests enabled

• The origin pipeline is visible to maintainers

41.10.6 Versioning

• Backwards-incompatible changes get a major version bump

• New features get a minor version bump

• Bugfixes get a point version bump

41.10. Contribution Guidelines 169

idem Documentation

170 Chapter 41. Contributing Guide

CHAPTER

FORTYTWO

LICENSE

Note: For a simplified breakdown of license information, it may be helpful to use tl;drLegal.

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a

(continues on next page)

171

https://tldrlegal.com/

idem Documentation

(continued from previous page)

copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

(continues on next page)

172 Chapter 42. License

idem Documentation

(continued from previous page)

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the

(continues on next page)

173

idem Documentation

(continued from previous page)

origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [2019] [Thomas S Hatch]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

(continues on next page)

174 Chapter 42. License

idem Documentation

(continued from previous page)

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

175

idem Documentation

176 Chapter 42. License

CHAPTER

FORTYTHREE

INDICES AND TABLES

• genindex

• modindex

• search

177

	Idem
	What does Idempotent mean?
	How Does This Language Work?
	Paradigms and Languages, This Sounds Complicated!

	Config Template
	idem doc
	doc
	file
	start_line_number
	end_line_number
	ref
	contracts
	parameters
	Examples

	Extending Idem
	What is POP?
	Lets Get Down to Business
	Making Your First Idem State

	Adding Requisites
	SLS Metadata
	SLS Level Metadata
	ID Level Metadata

	SLS Structure
	Core Components
	ID Declaration
	Path Reference
	Path Components

	Arguments
	Name and Names
	Order

	Requisites
	Requisite Ins

	Top Level Keys
	Include
	Extend
	RULES TO EXTEND BY

	SLS Parameters
	Creating a parameter file
	Calling parameters from a state
	Default parameter values
	Missing parameter values
	Running an SLS state file and parameter file
	Running an SLS state file and multiple parameter sources
	Parameter precedence

	SLS Parameter Validation
	Goal
	Limitation
	Overview of the process involved
	Step 1:- Transformation
	Step 2:- Extraction of parameters
	Step 3:- Tallying with meta section in SLS
	Step 4:- Remapping transformed strings original values

	Sample Output
	Some Additional Samples

	Argument Binding References
	Indexes
	“Resource” Contract
	Arg_bind Requisites

	SLS Inversion
	Motivation
	State Requisite Handling
	Normal Run
	Inverted Run

	Requirement
	Limitations
	Argumnet binding does not work

	JMESpath
	Practicing with Static Data
	Examples
	Learn More

	Transparent Requisites
	Unique Transparent Requisite

	Secure Multiple Account Management
	Static Account Management
	ACCT RENDER PIPES
	UNENCRYPTED ACCT FILE
	ALLOWED_BACKEND_PROFILES
	ACCT SERIAL PLUGIN

	ACCT FILE
	providers
	acct plugins
	profiles
	backends
	extras

	ignore_changes Requisite
	recreate_on_update Requisite
	Greenfield Example 1
	Brownfield Example 1
	Brownfield Example 2
	Greenfield Example 2

	Using a delay between states to resolve Jinja template argument binding
	Fetching argument binding reference values

	Delayed rendering
	Closing a delayed state block

	Sensitive Requisite
	SLS ACCT
	Aggregate State
	Single-use Profiles
	Copy From Existing Profiles

	SLS Sources
	The SLS Tree
	Exec State
	SLS Resolver Plugins - hub.source
	Group plugins - hub.group
	Finding Group Plugins
	Using Group Plugins
	Creating a Group Plugin

	Reconciliation Loop
	Reconciler Plugin
	Loop Implementation
	Reconciliation Wait Time
	Static
	Random
	Exponential

	Pending plugin
	CLI
	Batch Function
	Notes

	Enforced State Management
	Local cache
	Idem states
	Unlock Idem state run
	context
	Writing an ESM plugin
	refresh
	restore

	Progress Bar
	Configuration
	CLI
	Examples
	Basic progress bar
	Reconciliation
	Displaying separate progress bars

	Progress bars in PyCharm

	Count
	Events
	Firing Events
	from code
	from jinja/sls

	Event Profiles
	idem-*
	idem-status
	idem-low
	idem-high
	idem-state
	pre
	post

	idem-chunk
	idem-run
	idem-exec
	logger

	Kubernetes CRD support
	CRD format
	Execution

	Idem scripts
	Idem describe
	State file path as input
	Regular expression as input
	Filtering

	Tutorials
	Write To File Function
	Template Render Function
	Sleep Function
	Trigger State in Idem
	Example

	Single Target
	Tutorials
	Example Tutorial

	Microsoft Azure Cloud Provider
	Migrating Support From Salt
	Exec Modules and State Modules
	salt/modules to exec
	salt/states to states
	salt/utils to exec

	Namespaces
	Exec Function Calls
	States Function Calls
	Full Function Example
	Salt Function
	Idem State Function

	Releases
	Idem Release 3
	Now Pluggable!
	Runs Standalone!
	Code Sources are Pluggable
	Rendering is Separate
	Idem is a Language Runtime

	Idem 4 - Beyond Salt
	Late Rendering With Render Blocks
	Transparent Requisites

	Idem 5 - Encrypted Secrets
	Idem 5.1
	Idem 6
	Mod System
	Listen
	Any and All Requisites

	Idem 7
	New CLI
	The Acct system

	Idem 7.1
	Idem 7.4
	Idem 12.0.0
	Recursive Contracts for exec/state returns
	States
	Exec

	Kwarg Credentials for internal batch runs
	Get status of internal batch run

	Idem 12.0.2
	Idem 13.0.0
	Describe Subcommand
	Implementing describe functionality

	Idem 14.0.0
	Auto State
	Soft Fail
	Returns
	exec returns
	state returns

	Resource

	Idem 15.0.0
	Reconciler Plugin
	CLI
	LOOP

	Idem 15.0.1
	Idem 16.0.0
	Writing an ingress plugin
	Setting up credentials
	Firing Events

	from code
	from jinja/sls
	CLI
	Testing
	Logging Handler

	Idem 17.0.0
	Argument Binding References
	Indexes
	“Resource” Contract
	Arg_bind Requisites

	Contributing Guide
	TL;DR Quickstart
	Ways to contribute
	Overview of how to contribute to this repository
	Prerequisites
	Windows 10 users

	Fork, clone, and branch the repo
	Set up your local preview environment
	pre-commit and nox Setup
	What is pre-commit?

	Sync local master branch with upstream master
	Preview HTML changes locally
	Testing a pop project
	Contribution Guidelines
	Tests
	Documentation
	Code Style
	Issues
	Pull Requests
	Versioning

	License
	Indices and tables

